Mitotic Exit in the Absence of Separase Activity

Molecular Biology of the Cell - Tập 20 Số 5 - Trang 1576-1591 - 2009
Ying Lu1, Frederick R. Cross1
1The Rockefeller University, New York, NY 10065

Tóm tắt

In budding yeast, three interdigitated pathways regulate mitotic exit (ME): mitotic cyclin–cyclin-dependent kinase (Cdk) inactivation; the Cdc14 early anaphase release (FEAR) network, including a nonproteolytic function of separase (Esp1); and the mitotic exit network (MEN) driven by interaction between the spindle pole body and the bud cortex. Here, we evaluate the contributions of these pathways to ME kinetics. Reducing Cdk activity is critical for ME, and the MEN contributes strongly to ME efficiency. Esp1 contributes to ME kinetics mainly through cohesin cleavage: the Esp1 requirement can be largely bypassed if cells are provided Esp1-independent means of separating sister chromatids. In the absence of Esp1 activity, we observed only a minor ME delay consistent with a FEAR defect. Esp1 overexpression drives ME in Cdc20-depleted cells arrested in metaphase. We have found that this activity of overexpressed Esp1 depended on spindle integrity and the MEN. We defined the first quantitative measure for Cdc14 release based on colocalization with the Net1 nucleolar anchor. This measure indicates efficient Cdc14 release upon MEN activation; release driven by Esp1 in the absence of microtubules was inefficient and incapable of driving ME. We also found a novel role for the MEN: activating Cdc14 nuclear export, even in the absence of Net1.

Từ khóa


Tài liệu tham khảo

Alexandru G., 1999, EMBO J, 18, 2707, 10.1093/emboj/18.10.2707

Asakawa K., 2002, Genetics, 162, 1545, 10.1093/genetics/162.4.1545

Azzam R., 2004, Science, 305, 516, 10.1126/science.1099402

Bachant J., 2005, J. Cell Biol, 168, 999, 10.1083/jcb.200412076

Bardin A. J., 2000, Cell, 102, 21, 10.1016/S0092-8674(00)00007-6

Bean J. M., 2006, Mol. Cell, 21, 3, 10.1016/j.molcel.2005.10.035

Bembenek J., 2005, Cell Cycle, 4, 961, 10.4161/cc.4.7.1798

Bi E., 1998, J Cell Biol, 142, 1301, 10.1083/jcb.142.5.1301

Charvin G., 2008, PLoS ONE, 3, e1468, 10.1371/journal.pone.0001468

Chen C. T., 2008, Curr. Biol, 18, 1594, 10.1016/j.cub.2008.08.067

Cohen-Fix O., 1996, Genes Dev, 10, 3081, 10.1101/gad.10.24.3081

D'Amours D., 2004, Cell, 117, 455, 10.1016/S0092-8674(04)00413-1

Eluere R., 2007, J. Cell Sci, 120, 702, 10.1242/jcs.03380

Epstein C. B., 1992, Genes Dev, 6, 1695, 10.1101/gad.6.9.1695

10.1091/mbc.3.7.805

Gadal O., 2001, Mol. Cell. Biol, 21, 3405, 10.1128/MCB.21.10.3405-3415.2001

Higuchi T., 2005, Nature, 433, 171, 10.1038/nature03240

Hirano T., 1986, EMBO J, 5, 2973, 10.1002/j.1460-2075.1986.tb04594.x

Hofken T., 2002, EMBO J, 21, 4851, 10.1093/emboj/cdf481

Holt L. J., 2008, Nature, 454, 353, 10.1038/nature07050

Hwang L. H., 1998, Science, 279, 1041, 10.1126/science.279.5353.1041

Jaspersen S. L., 1999, Curr. Biol, 9, 227, 10.1016/S0960-9822(99)80111-0

10.1091/mbc.9.10.2803

Jaspersen S. L., 2000, Curr. Biol, 10, 615, 10.1016/S0960-9822(00)00491-7

Jensen S., 2001, J. Cell Biol, 152, 27, 10.1083/jcb.152.1.27

Khmelinskii A., 2007, J. Cell Biol, 177, 981, 10.1083/jcb.200702145

Kim S. H., 1998, Science, 279, 1045, 10.1126/science.279.5353.1045

Koch C., 1994, Curr. Opin. Cell Biol, 6, 451, 10.1016/0955-0674(94)90039-6

Lew D. J., 1993, J. Cell Biol, 120, 1305, 10.1083/jcb.120.6.1305

Lim H. H., 1998, Curr. Biol, 8, 231, 10.1016/S0960-9822(98)70088-0

Menssen R., 2001, Curr. Biol, 11, 345, 10.1016/S0960-9822(01)00095-1

Michaelis C., 1997, Cell, 91, 35, 10.1016/S0092-8674(01)80007-6

10.1091/mbc.e03-09-0708

Mumberg D., 1994, Nucleic Acids Res, 22, 5767, 10.1093/nar/22.25.5767

Padmashree C. G., 2001, J. Cell Sci, 114, 207, 10.1242/jcs.114.1.207

Palmer R. E., 1989, J. Cell Biol, 109, 3355, 10.1083/jcb.109.6.3355

Pereira G., 2002, J. Cell Biol, 157, 367, 10.1083/jcb.200112085

Pereira G., 2003, Science, 302, 2120, 10.1126/science.1091936

Queralt E., 2006, Cell, 125, 719, 10.1016/j.cell.2006.03.038

Rahal R., 2008, Genes Dev, 22, 1534, 10.1101/gad.1638308

Rodrigues F., 2001, J. Bacteriol, 183, 3791, 10.1128/JB.183.12.3791-3794.2001

Ross K. E., 2004, Dev. Cell, 6, 729, 10.1016/S1534-5807(04)00128-5

Schwab M., 1997, Cell, 90, 683, 10.1016/S0092-8674(00)80529-2

Schwob E., 1994, Cell, 79, 233, 10.1016/0092-8674(94)90193-7

Severin F., 2001, J. Cell Biol, 155, 711, 10.1083/jcb.200104096

Shirayama M., 1999, Nature, 402, 203, 10.1038/46080

Shou W., 2002, BMC Genet, 3, 4, 10.1186/1471-2156-3-4

Shou W., 1999, Cell, 97, 233, 10.1016/S0092-8674(00)80733-3

Skotheim J. M., 2008, Nature, 454, 291, 10.1038/nature07118

10.1091/mbc.9.12.3273

Stegmeier F., 2004, Annu. Rev. Genet, 38, 203, 10.1146/annurev.genet.38.072902.093051

Stegmeier F., 2002, Cell, 108, 207, 10.1016/S0092-8674(02)00618-9

Sullivan M., 2004, Cell, 117, 471, 10.1016/S0092-8674(04)00415-5

Sullivan M., 2003, Nat. Cell Biol, 5, 249, 10.1038/ncb940

Thornton B. R., 2003, Nat. Cell Biol, 5, 1090, 10.1038/ncb1066

Tinker-Kulberg R. L., 1999, Genes Dev, 13, 1936, 10.1101/gad.13.15.1936

Trautmann S., 2001, Curr. Biol, 11, 931, 10.1016/S0960-9822(01)00268-8

Uhlmann F., 1999, Nature, 400, 37, 10.1038/21831

Uhlmann F., 2000, Cell, 103, 375, 10.1016/S0092-8674(00)00130-6

Verma R., 1997, Science, 278, 455, 10.1126/science.278.5337.455

Visintin C., 2008, Genes Dev, 22, 79, 10.1101/gad.1601308

Visintin R., 2008, Science, 278, 460, 10.1126/science.278.5337.460

Visintin R., 1998, Mol. Cell, 2, 709, 10.1016/S1097-2765(00)80286-5

Visintin R., 1999, Nature, 398, 818, 10.1038/19775

10.1091/mbc.e03-02-0095

Wasch R., 2002, Nature, 418, 556, 10.1038/nature00856

Wirth K. G., 2006, J. Cell Biol, 172, 847, 10.1083/jcb.200506119

Yamamoto A., 1996, J. Cell Biol, 133, 99, 10.1083/jcb.133.1.99

Yeh E., 1995, J. Cell Biol, 130, 687, 10.1083/jcb.130.3.687

Yeong F. M., 2000, Mol. Cell, 5, 501, 10.1016/S1097-2765(00)80444-X

Yoshida S., 2002, Curr. Biol, 12, 944, 10.1016/S0960-9822(02)00870-9

Zeng X., 1999, J. Cell Biol, 146, 415, 10.1083/jcb.146.2.415