Mitogen activated protein kinase phosphatase-1 prevents the development of tactile sensitivity in a rodent model of neuropathic pain

Molecular Pain - Tập 8 - Trang 1-12 - 2012
Christian Ndong1,2, Russell P Landry1, Joyce A DeLeo1,3,4, Edgar Alfonso Romero-Sandoval1,3,5
1Department of Anesthesiology, Dartmouth Medical School, Lebanon, USA
2(current affiliation) Department of Bioengineering, Thayer School of Engineering at Dartmouth, Hanover, USA
3Department of Pharmacology & Toxicology, Dartmouth Medical School, Hanover, USA
4(current affiliation) Department of Biology, Emmanuel College, Boston, USA
5One Medical Center Drive, Lebanon, USA

Tóm tắt

Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK) family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs) limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of spinal MKP-1 will prevent the development of peripheral nerve-injury-induced hypersensitivity and p-p38 overexpression. We cloned rat spinal cord MKP-1 and optimize MKP-1 cDNA in vitro using transfections to BV-2 cells. We observed that in vitro overexpression of MKP-1 blocked lipopolysaccharide-induced phosphorylation of p38 (and other MAPKs) as well as release of pro-algesic effectors (i.e., cytokines, chemokines, nitric oxide). Using this cDNA MKP-1 and a non-viral, in vivo nanoparticle transfection approach, we found that spinal cord overexpression of MKP-1 prevented development of peripheral nerve-injury-induced tactile hypersensitivity and reduced pro-inflammatory cytokines and chemokines and the phosphorylated form of p38. Our results indicate that MKP-1, the natural regulator of p-p38, mediates resolution of the spinal cord pro-inflammatory milieu induced by peripheral nerve injury, resulting in prevention of chronic mechanical hypersensitivity. We propose that MKP-1 is a potential therapeutic target for pain treatment or prevention.

Tài liệu tham khảo

Committee on Advancing Pain Research C, and Education; Institute of, Medicine: Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. In Book Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research (Editor ed.^eds.). City; 2011 Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA, et al.: Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 2003, 60: 1524–1534. 10.1001/archneur.60.11.1524 Finnerup NB, Sindrup SH, Jensen TS: The evidence for pharmacological treatment of neuropathic pain. Pain 2010, 150: 573–581. 10.1016/j.pain.2010.06.019 Ji RR, Gereau RWt, Malcangio M, Strichartz GR: MAP kinase and pain. Brain Res Rev 2009, 60: 135–148. 10.1016/j.brainresrev.2008.12.011 Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR: Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 2004, 24: 8310–8321. 10.1523/JNEUROSCI.2396-04.2004 Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR: Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 2008, 14: 331–336. 10.1038/nm1723 Tong SE, Daniels SE, Black P, Chang S, Protter A, Desjardins PJ: Novel p38{alpha} Mitogen-Activated Protein Kinase Inhibitor Shows Analgesic Efficacy in Acute Postsurgical Dental Pain. J Clin Pharmacol 2011. 10.1177/0091270011405496 Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, Bird N, Ostenfeld T, Chizh BA: Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain 2011, 15: 1040–1048. 10.1016/j.ejpain.2011.04.005 Ji RR, Suter MR: p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 2007, 3: 33. 10.1186/1744-8069-3-33 Zhou Y, Ling EA, Dheen ST: Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J Neurochem 2007, 102: 667–678. 10.1111/j.1471-4159.2007.04535.x Alkaitis MS, Solorzano C, Landry RP, Piomelli D, DeLeo JA, Romero-Sandoval EA: Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain. PLoS One 2010, 5: e10891. 10.1371/journal.pone.0010891 Korhonen R, Turpeinen T, Taimi V, Nieminen R, Goulas A, Moilanen E: Attenuation of the acute inflammatory response by dual specificity phosphatase 1 by inhibition of p38 MAP kinase. Mol Immunol 2011, 48: 2059–2068. 10.1016/j.molimm.2011.06.439 Jin SX, Zhuang ZY, Woolf CJ, Ji RR: p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 2003, 23: 4017–4022. Romero-Sandoval EA, Horvath R, Landry RP, DeLeo JA: Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol Pain 2009, 5: 25. 10.1186/1744-8069-5-25 Hamm A, Krott N, Breibach I, Blindt R, Bosserhoff AK: Efficient transfection method for primary cells. Tissue Eng 2002, 8: 235–245. 10.1089/107632702753725003 Kizjakina K, Bryson JM, Grandinetti G, Reineke TM: Cationic glycopolymers for the delivery of pDNA to human dermal fibroblasts and rat mesenchymal stem cells. Biomaterials 2012, 33: 1851–1862. 10.1016/j.biomaterials.2011.10.031 Shi L, Tang GP, Gao SJ, Ma YX, Liu BH, Li Y, Zeng JM, Ng YK, Leong KW, Wang S: Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther 2003, 10: 1179–1188. 10.1038/sj.gt.3301970 Jeffrey KL, Camps M, Rommel C, Mackay CR: Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 2007, 6: 391–403. 10.1038/nrd2289 Wen YR, Suter MR, Ji RR, Yeh GC, Wu YS, Wang KC, Kohno T, Sun WZ, Wang CC: Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology 2009, 110: 155–165. 10.1097/ALN.0b013e318190bc16 Romero-Sandoval A, Nutile-McMenemy N, DeLeo JA: Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury. Anesthesiology 2008, 108: 722–734. 10.1097/ALN.0b013e318167af74 Romero-Sandoval A, Eisenach JC: Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. Anesthesiology 2007, 106: 787–794. 10.1097/01.anes.0000264765.33673.6c Kawasaki Y, Zhang L, Cheng JK, Ji RR: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28: 5189–5194. 10.1523/JNEUROSCI.3338-07.2008 Sweitzer S, Martin D, DeLeo JA: Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience 2001, 103: 529–539. 10.1016/S0306-4522(00)00574-1 Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O: The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 2006, 49: 67–79. 10.1016/j.neuron.2005.11.027 Gao YJ, Zhang L, Ji RR: Spinal injection of TNF-alpha-activated astrocytes produces persistent pain symptom mechanical allodynia by releasing monocyte chemoattractant protein-1. Glia 2010, 58: 1871–1880. 10.1002/glia.21056 Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL, Ma Q, Ji RR: JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 2009, 29: 4096–4108. 10.1523/JNEUROSCI.3623-08.2009 Zhang YH, Chi XX, Nicol GD: Brain-derived neurotrophic factor enhances the excitability of rat sensory neurons through activation of the p75 neurotrophin receptor and the sphingomyelin pathway. J Physiol 2008, 586: 3113–3127. 10.1113/jphysiol.2008.152439 Sorkin LS, Xiao WH, Wagner R, Myers RR: Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997, 81: 255–262. 10.1016/S0306-4522(97)00147-4 Svensson CI, Fitzsimmons B, Azizi S, Powell HC, Hua XY, Yaksh TL: Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem 2005, 92: 1508–1520. 10.1111/j.1471-4159.2004.02996.x Svensson CI, Schafers M, Jones TL, Powell H, Sorkin LS: Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci Lett 2005, 379: 209–213. 10.1016/j.neulet.2004.12.064 Brondello JM, Pouyssegur J, McKenzie FR: Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 1999, 286: 2514–2517. 10.1126/science.286.5449.2514 Slack DN, Seternes OM, Gabrielsen M, Keyse SM: Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem 2001, 276: 16491–16500. 10.1074/jbc.M010966200 Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Hobel S, Czubayko F, Aigner A: RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther 2006, 17: 751–766. 10.1089/hum.2006.17.751 Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A: RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 2005, 12: 461–466. 10.1038/sj.gt.3302425 Mislick KA, Baldeschwieler JD: Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A 1996, 93: 12349–12354. 10.1073/pnas.93.22.12349 Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA: A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 1996, 7: 1947–1954. 10.1089/hum.1996.7.16-1947 Goula D, Remy JS, Erbacher P, Wasowicz M, Levi G, Abdallah B, Demeneix BA: Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 1998, 5: 712–717. 10.1038/sj.gt.3300635 Tang GP, Guo HY, Alexis F, Wang X, Zeng S, Lim TM, Ding J, Yang YY, Wang S: Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system. J Gene Med 2006, 8: 736–744. 10.1002/jgm.874 Wu K, Meyers CA, Bennett JA, King MA, Meyer EM, Hughes JA: Polyethylenimine-mediated NGF gene delivery protects transected septal cholinergic neurons. Brain Res 2004, 1008: 284–287. 10.1016/j.brainres.2004.02.051 Soderquist RG, Sloane EM, Loram LC, Harrison JA, Dengler EC, Johnson SM, Amer LD, Young CS, Lewis MT, Poole S, et al.: Release of plasmid DNA-encoding IL-10 from PLGA microparticles facilitates long-term reversal of neuropathic pain following a single intrathecal administration. Pharm Res 2010, 27: 841–854. 10.1007/s11095-010-0077-y Bonnet ME, Erbacher P, Bolcato-Bellemin AL: Systemic delivery of DNA or siRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharm Res 2008, 25: 2972–2982. 10.1007/s11095-008-9693-1 Oh S, Pluhar GE, McNeil EA, Kroeger KM, Liu C, Castro MG, Lowenstein PR, Freese A, Ohlfest JR: Efficacy of nonviral gene transfer in the canine brain. J Neurosurg 2007, 107: 136–144. 10.3171/JNS-07/07/0136 Lambert RC, Maulet Y, Dupont JL, Mykita S, Craig P, Volsen S, Feltz A: Polyethylenimine-mediated DNA transfection of peripheral and central neurons in primary culture: probing Ca2+ channel structure and function with antisense oligonucleotides. Mol Cell Neurosci 1996, 7: 239–246. 10.1006/mcne.1996.0018 Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63. 10.1016/0165-0270(94)90144-9