Mitochondrial transplantation for therapeutic use

Clinical and Translational Medicine - Tập 5 Số 1 - 2016
James D. McCully1,2, Sidney Levitsky3,2, Pedro J. del Nido1,2, Douglas B. Cowan4,2
1Division of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave., Enders Building, EN 407, 02115 Boston, MA, USA
2Harvard Medical School, Boston, MA, USA
3Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 2A, 02115 Boston, MA, USA
4Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Endres Building, EN 312, 02115 Boston, MA, USA

Tóm tắt

AbstractMitochondria play a key role in the homeostasis of the vast majority of the body's cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium is restored, and significantly decrease myocardial contractile function and myocardial cell survival. We hypothesized that the augmentation or replacement of mitochondria damaged by ischemia would provide a mechanism to enhance cellular function and cellular rescue following the restoration of blood flow. To test this hypothesis we have used a model of myocardial ischemia and reperfusion. Our studies demonstrate that the transplantation of autologous mitochondria, isolated from the patient's own body, and then directly injected into the myocardial during early reperfusion augment the function of native mitochondria damaged during ischemia and enhances myocardial post‐ischemic functional recovery and cellular viability. The transplanted mitochondria act both extracellularly and intracellularly. Extracellularly, the transplanted mitochondria enhance high energy synthesis and cellular adenosine triphosphate stores and alter the myocardial proteome. Once internalized the transplanted mitochondria rescue cellular function and replace damaged mitochondrial DNA. There is no immune or auto‐immune reaction and there is no pro‐arrhythmia as a result of the transplanted mitochondria. Our studies and those of others demonstrate that mitochondrial transplantation can be effective in a number of cell types and diseases. These include cardiac and skeletal muscle, pulmonary and hepatic tissue and cells and in neuronal tissue. In this review we discuss the mechanisms leading to mitochondrial dysfunction and the effects on cellular function. We provide a methodology for the isolation of mitochondria to allow for clinical relevance and we discuss the methods we and others have used for the uptake and internalization of mitochondria. We foresee that mitochondrial transplantation will be a valued treatment in the armamentarium of all clinicians and surgeons for the treatment of varied ischemic disorders, mitochondrial diseases and related disorders.

Từ khóa


Tài liệu tham khảo

10.1016/j.cell.2009.08.005

10.1007/s11033-014-3663-y

10.1159/000212932

10.1016/0003-4975(95)00446-R

Faulk EA, 1995, Magnesium cardioplegia enhances mRNA levels and the maximal velocity of cytochrome oxidase I in the senescent myocardium during global ischemia, Circulation, 92, 405, 10.1161/01.CIR.92.9.405

10.1152/ajpheart.00338.2004

10.1016/S0163-7258(00)00102-9

10.1016/j.athoracsur.2006.10.059

10.1067/mtc.2001.111421

10.1038/427407b

10.1007/s003950070046

Tsukube T, 1997, Amelioration of ischemic calcium overload correlates with high energy phosphates in the senescent myocardium, Am J Physiol, 273, H418

Levitsky S, 2003, Mitochondrial DNA deletions in coronary artery bypass grafting patients, Eur J Cardiothorac Surg, 24, 777, 10.1016/S1010-7940(03)00501-3

10.1016/0027-5107(95)00165-4

Gaweda‐Walerych K, 2013, The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease, Curr Genomics, 14, 543, 10.2174/1389202914666131210211033

10.1152/physiolgenomics.00033.2009

10.1152/ajpheart.00935.2003

10.1016/j.athoracsur.2006.03.002

10.1152/ajpheart.00883.2012

10.1152/ajpheart.00567.2008

10.1084/jem.84.1.61

10.1016/S0091-679X(06)80001-4

10.1016/j.mito.2009.12.148

10.1038/nprot.2006.478

10.1038/nprot.2009.151

Gostimskaya I, 2010, Preparation of highly coupled rat heart mitochondria, J Vis Exp, 10, 2202

Preble JM, 2014, Rapid isolation and purification of mitochondria for transplantation, J Vis Exp, 91, e51682

Preble JM, 2014, Quality control parameters for mitochondria transplant in cardiac tissue, JSM Biochem Mol Biol, 2, 1008

10.1016/j.biocel.2009.05.004

10.1152/ajpheart.00747.2013

10.1016/0022-4804(90)90120-Q

Soncul H, 1992, Cardioplegia with adenosine and adenosine triphosphate in the isolated guinea pig heart, Jpn Heart J, 33, 843, 10.1536/ihj.33.843

10.1097/00005344-199424050-00008

10.1242/bio.201511478

Margulis L, 1975, Symbiotic theory of the origin of eukaryotic organelles; criteria for proof, Symp Soc Exp Biol, 29, 21

10.1073/pnas.1300741110

10.1038/nm.2736

10.1371/journal.pone.0033093

10.1073/pnas.0510511103

RocheS D’IppolitoG GomezLA BouckenoogheT LehmannS Montero‐MeneiCN SchillerPC(2012)Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm. doi:https://doi.org/10.1016/j.ijpharm.2011.12.041

10.1007/s13105-010-0009-7

10.3109/08977194.2011.634411

10.1634/stemcells.2006-0293

10.1016/S0003-4975(02)04290-X

10.1016/j.athoracsur.2008.11.057

10.1093/nar/gkn124

10.1016/0092-8674(88)90423-0

10.1007/s10549-012-2283-2

10.1159/000341981

10.1016/j.trsl.2015.12.003

10.1097/SHK.0b013e318283035f

10.1111/jcmm.12316