Mitigation potential of important farm and forest trees: a potentiality for clean development mechanism afforestation reforestation (CDM A R) project and reducing emissions from deforestation and degradation, along with conservation and enhancement of carbon stocks (REDD+)
Tóm tắt
The effectiveness and integrity of forest-based emissions reduction schemes such as Clean Development Mechanism Afforestation Reforestation (CDM A R) project and Reducing Emissions from Deforestation and Degradation (REDD+), along with conservation and enhancement of carbon (C) stocks implementation and assessment in developing countries are required not only, the appropriate monitoring and evaluation, rather the precise values of constants being used to estimate the C stocks or C credit in place of default or guess value. Estimates are reported of the C content of wood of four forest species (Shorea robusta, Pinus roxburghii, Tectona grandis and Cinnamomum camphora) and two important farm species (Populus deltoides and Eucalyptus treticornis) in the temperate region of Indian Himalayas, derived using the ash content method. These species were considered keeping in view of their potentiality for the C sequestration and storage projects across the developing countries specifically the South East Asian Countries. The specific gravity, ash content and C proportion is estimated for these six species by selecting random woods pieces. These estimates are designed to improve the calculations of biomass C for use in estimation of C credits in the developing region under CDM A R projects and REDD+ program supported by developed country. Regression analysis of C prediction models revealed that, for all six species, C content may be estimated through specific gravity of the wood by a linear equation without intercept. Indirectly, this results also implies that among the two farm trees, eucalyptus has high potentiality for C capturing and among four forest trees, Shorea robusta has high potentiality, therefore these two should have preference for plantation/regeneration as well as for conservation.