Mining consuming Behaviors with Temporal Evolution for Personalized Recommendation in Mobile Marketing Apps
Tóm tắt
Tài liệu tham khảo
Mobile Marketing Statistics to Help You Plan for 2017. https://www.impactbnd.com/blog/mobile-marketing-statistics-for-2016
Brusilovsky P, Kobsa A, Nejdl W (2007) The adaptive web: methods and strategies of web personalization [J]. Lect Notes Comput Sci
Jian C, Jian Y, Jin H (2005) Automatic Content-Based Recommendation in e-Commerce[M]// Automatic content-based recommendation in e-commerce. 748–753
Yin Y, Chen L, Xu Y, Wan J, Zhang H, Mai Z (2019) QoS Prediction for Service Recommendation with Deep Feature Learning in Edge Computing Environment. Mobile Networks and Applications. https://doi.org/10.1007/s11036-019-01241-7, QoS Prediction for Service Recommendation with Deep Feature Learning in Edge Computing Environment
Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Comput 7(1):76–80
Das AS, Datar M, Garg A et al. (2007) Google news personalization: scalable online collaborative filtering[J]. Www, 271–280
Liu B, Bennett J, Elkan C et al (2007) KDD cup and workshop 2007[J]. Acm Sigkdd Explorations Newsletter 9(2):51–52
Yin Y, Aihua S, Gao M, Xu Y (2016) Wang Shuoping:QoS prediction for web service recommendation with network location-aware neighbor selection. Int J Softw Eng Knowl Eng 26(4):611–632
Ren Y, Zhu T, Li G, et al. (2013) Top-N recommendations by learning user preference dynamics[M]// advances in knowledge discovery and data mining. Springer Berlin Heidelberg, 390–401
Guo B, Dou K, Kuang L. Life stage based recommendation in e-commerce. International Joint Conference on Neural Networks (IJCNN). 3461–3468
Fisher RA (1958) Statistical methods for research workers[M]// statistical methods for research workers.. Госстатиздат, 66–70