Miniaturization of polymerase chain reaction

Springer Science and Business Media LLC - Tập 8 - Trang 213-220 - 2003
Ji Youn Lee1, Jae Jeong Kim1, Tai Hyun Park1
1School of Chemical Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Korea

Tóm tắt

Polymerase chain reaction (PCR) is one of the most widely used analytical tool and is an important module that would benefit from being miniaturized and integrated onto diagnostic or analytical chips. There are potentially two different approaches for the miniaturization of the PCR module: chamber-type and flow-type micro-PCR. These miniaturized PCRs have distinct characteristics and advantages. In this article, we review the necessity of micro-PCR, the materials for the chip fabrication, the surface modification, and characteristics of the two types of micro-PCR. The motivation underlying the development of micro-PCR, the advantages and disadvantages of the various materials used in fabrication and the surface modification methods will be discussed. And finally, the precise features of the two different types of micro-PCR will be compared.

Tài liệu tham khảo

Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, and N. Arnheim (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.Science 230: 1350–1354. Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.Science 239: 487–491. Schnell, S. and C. Mendoza (1997) Theoretical description of the polymerase chain reaction.J. Theor. Biol. 188: 313–318. Kricka, L. J. (2001) Microchips, microarrays, biochips and nanochips: Personal laboratories for the 21st century.Clin. Chim. Acta 307: 219–223. Whitcombe, D., C. R. Newton, and S. Little (1998) Advances in approaches to DNA-based diagnostics.Curr. Opin. Biotechnol. 9: 602–608. Han, J. and H. G. Craighead (2000) Separation of long DNA molecules in a microfabricated entropic trap array.Science 288: 1026–1029. Chou, H.-P., C. Spence, A. Scherer, and S. Ouake (1999) A microfabricated device for sizing and sorting DNA molecules.Proc. Natl. Acad. Sci. USA 96: 11–13. Khandurina, J., S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis.Anal. Chem. 71: 1815–1819. Hadd, A. G., D. E. Raymond, J. W. Halliwell, S. C. Jacobson, and J. M. Ramsey (1997) Microchip device for performing enzyme assays.Anal. Chem. 69: 3407–3412. Wang, J., A. Ibanez, M. P. Chatrathi, and A. Escarpa (2001) Electrochemical enzyme immunoassays on microchip platforms.Anal. Chem. 73: 5323–5327. Dunn, W. C., S. C. Jacobson, L. C. Waters, N. Kroutchinia J. Khandurina, R. S. Foote, M. J. Justice, L. J. Stubbs, and J. M. Ramsey (2000) PCR amplification and analysis of simple sequence length polymorphisms in mouse DNA using a single microchip device.Anal. Biochem. 277: 157–160. Cheng, J., M. A. Shoffner, K. R. Mitchelson, L. J. Kricka, and P. Wilding (1996) Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis.J. Chromatogr. A 732: 151–158. Medintz, I. L., B. M. Paegel, and R. A. Mathies (2001) Microfabricated capillary array electrophoresis DNA analysis systems.J. Chromatogr. A 924: 265–270. Scherer, J. R., I. Kheterpal, A. Radhakrishnan, W. Ja William, and R. A. Mathies (1999) Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis.Electrophoresis 20: 1508–1517. Ross, P. L., P. A. Davis, and P. Belgrader (1998) Analysis of DNA fragments from conventional and microfabricated PCR devices using delayed extraction MALDI-TOF mass spectrometry.Anal. Chem. 70: 2067–2073. Xue, O., Y. M. Dunayevskiy, F. Foret, and B. L. Karger (1997) Integrated multichannel microchip electrospray ionization mass spectrometry: Analysis of peptides from on-chip tryptic digestion of melittin.Rapid Commun. Mass Spectrom. 11: 1253–1256. Kopp, M. U., A. J. Mello, and A. Manz (1998) Chemical amplification: continuous-flow PCR on a chip.Science 280: 1046–1048. Daniel, J. H., S. Iqbal, R. B. Millington, D. F. Moore, C. R. Lowe, D. L. Leslie, M. A. Lee, and M. J. Pearce (1998) Silicon microchambers for DNA amplificationSens. Actuat. A 71: 81–88. Chovan, T. and A. Guttman (2002) Microfabricated devices in biotechnology and biochemical processing.Trends Biotechnol. 20: 116–122. Northrup, M. A., B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, and P. Stratton (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers.Anal. Chem. 70: 918–922. Shoffner, M. A., J. Cheng, G. E. Hvichia, L. J. Kricka, and P. Wilding (1996) Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.Nucleic Acids Res. 24: 375–379. Jakeway, S. C., A. J. de Mello, and E. L. Russell (2000) Miniaturized total analysis systems for biological analysis.Fresenius J. Anal. Chem. 366: 525–539. Cheng, J., L. J. Kricka, E. L. Sheldon, and P. Wilding (1998) Sample preparation in microstructured devices.Topcis Curr. Chem. 194: 215–231. Krishnan, M., V. Namasivayam, R. Lin, R. Pal, and M. A. Burns (2001) Microfabricated reaction and separation systems.Curr. Opin. Biotechnol. 12: 92–98. Wilding, P., L. J. Kricka, J. Cheng, G. Hvichia, M. A. Shoffner, and P. Fortina (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers.Anal. Biochem. 257: 95–100. Cheng, J., L. C. Waters, P. Fortina, G. Hvichia, S. C. Jacobson, J. M. Ramsey, L. J. Kricka, and P. Wilding (1998) Degenerate oligonucleotide primed-polymerase chain reaction and capillary electrophoretic analysis of human DNA on microchip-based devices.Anal. Biochem. 257: 101–106. Khandurina, J., T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices.Anal. Chem. 72: 2995–3000. Lagally, E. T., P. C. Simpson, and R. A. Mathies (2000) Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system.Sens. Actuat. B 63: 138–146. Woolley, A. T., D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, and M. A. Northrup (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device.Anal. Chem. 68: 4081–4086. Burns, M. A., C. H. Mastrangelocarlos, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnson, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke (1996) Microfabricated structures for integrated DNA analysis.Proc. Natl. Acad. Sci. USA 93: 5556–5561. Hong, J. W., T. Fujii, M. Seki, T. Yamamoto, and I. Endo (2001) Integration of gene amplification and capillary gel electrophoresis on a PDMS-glass hybrid microchip.Electrophoresis. 22: 328–333. Soper, S. A., S. M. Ford, Y. Xu, S. Oi, S. McWhorter, S. Lassiter, D. Patterson, and R. C. Bruch (1999) Nanoliterscale sample preparation methods directly coupled to polymethylmethacrylate-based microchips and gel-filled capillaries for the analysis of oligonucleotides.J. Chromatogr. A 853: 107–120. Waters, L. C., S. C. Jacobson, N. Kroutchinina, J. Khandurina, R. S. Foote, and J. M. Ramsey (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing.Anal. Chem. 70: 158–162. Anderson, R. C., X. Su, G. J. Bogdan, and J. Fenton (2000) A miniature integrated device for automated multistep genetic assays.Nucleic Acids Res. 28: e60. Belgrader, P., M. Okuzumi, F. Pourahmadi, D. A. Borkholder, and M. A. Northrup (2000) A microfluidic cartridge to prepare spores for PCR analysis.Biosens. Bioelectron. 14: 849–852. Burns, M. A., B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke (1998) An integrated nanoliter DNA analysis device.Science 282: 484–487. Taylor, T. B., E. S. Winn-Deen, E. Picozza, T. M. Woudenberg, and M. Albin (1997) Optimization of the performance of the polymerase chain reaction in siliconbased microstructures.Nucleic Acids Res. 25: 3164–3168. Ibrahim, M. S., R. S. Lofts, P. B. Jahrling, E. A. Henchal, V. W. Weedn, M. A. Northrup, and P. Belgrader (1998) Real-time microchip PCR for detecting single-base differences in viral and human DNA.Anal. Chem. 70: 2013–2017. Sun, K., A. Yamaguchi, Y. Ishida, S. Matsuo, and H. Misawa (2002) A heater-integrated transparent microchannel chip for continuous-flow PCR.Sens. Actuat. B 84: 283–289. Chen, Y. and A. Pepin (2001) Nanofabrication: Conventional and nonconventional methods.Electrophoresis 22: 187–207. Poser, S., T. Schulz, U. Dillner, V. Baier, J. M. Kohler, D. Schimkat, G. Mayer, and A. Seibert (1997) Chip elements for fast thermocycling.Sens. Actuat. A 52: 672–675. Duffy, D. C., J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane).Anal. Chem. 70: 4974–4984. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane).Electrophoresis 21: 27–40. Fujii, T. (2002) PDMS-based microfluidic devices for biomedical applications.Microelectron. Eng. 61–62: 907–914. Zhang, O., W. Wang, H. Zhange, and Y. Wang (2002) Temperature analysis of continuous-flow micro-PCR based on FEA.Sens. Actuat. B 82: 75–81. Chou, C. F., R. Changrani, P. Roberts, D. Sadler, J. Burdon, F. Zenhausern, S. Lin, A. Mulholland, N. Swami, and R. Terbrueggen (2002) A miniaturized cyclic PCR device-modeling and experiments.Microelectron. Eng. 61–62: 921–925. Lin, Y.-C., C.-C. Yang, and M.-Y. Huang (2000) Simulation and experimental validation of micro polymerase chain reaction chips.Sens. Actuat. B 71: 127–133. Lee, T. M. H., Hsing, I-M., A. I. K. Lao, and M. C. Carles (2000) A miniaturized DNA amplifier: Its application in traditional chinese medicine.Anal. Chem. 72: 4242–4247. Nagai, H., Y. Murakami, K. Yokoyama, and E. Tamiya (2001) High-throughput PCR in silicon based microchamber array.Biosens. Bioelectron. 16: 1015–1019. Lagally, E. T., I. Medintz, and R. A. Mathies (2001) Single-molecule DNA amplification and analysis in an integrated microfluidic device.Anal. Chem. 73: 565–570. Oda, R. P., M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers (1988) Infraredmediated thermocycling for ultrafast polymerase chain reaction amplification of DNA.Anal. Chem. 70: 4361–4368. Giordano, B. C., E. B. Copeland, and J. P. Landers (2001) Towards dynamic coating of glass microchip chambers for amplifying DNA via the polymerase chain reaction.Electrophoresis 22: 334–340. Schneegaß, I. and J. M. Kohler (2001) Flow-through polymerase chain reactions in chip thermocyclers.Rev. Mol. Biotechnol. 82: 101–121. Cheng, J., M. A. Shoffner, G. E. Hvichia, L. J. Kricka, and Peter Wilding (1996) Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-grass chips.Nucleic Acids Res. 24: 375–379. Belgrader, P., W. Benett, D. Hadley, G. Long, R. Mariella, Jr., F. Milanovich, S. Nasarabadi, W. Nelson, J. Richards, and P. Stratton (1998) Rapid pathogen detection using a microchip PCR array instrument.Clin. Chem. 44: 2191–2194.