Midinfrared emission properties of Pr3+-doped chalcogenide glasses at cryogenic temperature

Journal of Applied Physics - Tập 93 Số 11 - Trang 8970-8974 - 2003
Yong Han1, Jong Heo1
1Photonic Glasses Laboratory, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, Republic of Korea

Tóm tắt

Low-temperature midinfrared emission properties of Pr3+-doped Ge30Ga2As6S62 and Ge28Ga5As12Se55 glasses (at. %) were investigated. Emissions centered at 3400 and 4700 nm were clearly observed from sulfide and selenide glasses, respectively, when the specimens were cooled to 20 K. The measured lifetime of the G41 level in sulfide glass increased from 320 μs at room temperature to 400 μs at 20 K. The intensity and quantum efficiency of the emission from the Pr3+:(3F3, 3F4) level in selenide glass also increased as the temperature decreased to 120 K. The enhancement resulted from a decrease in nonradiative multiphonon relaxation at low temperatures. The temperature dependence of the multiphonon relaxation rates indicated that the asymmetrical stretching vibration of GeS4 tetrahedra (375 cm−1) is primarily responsible for the multiphonon relaxation process in sulfide glass.

Từ khóa


Tài liệu tham khảo

1989, Appl. Phys. Lett., 55, 721, 10.1063/1.101785

1992, J. Non-Cryst. Solids, 140, 19, 10.1016/S0022-3093(05)80734-3

1997, Opt. Express, 1, 87, 10.1364/OE.1.000087

1997, J. Lumin., 72–74, 419

1999, J. Non-Cryst. Solids, 253, 23, 10.1016/S0022-3093(99)00403-2

1999, J. Opt. Soc. Am. B, 16, 308, 10.1364/JOSAB.16.000308

1974, Phys. Rev. B, 9, 1591, 10.1103/PhysRevB.9.1591

2000, J. Non-Cryst. Solids, 270, 137, 10.1016/S0022-3093(00)00066-1

1994, IEEE J. Quantum Electron., 30, 2925, 10.1109/3.362716

1996, IEEE J. Quantum Electron., 32, 646, 10.1109/3.488838

2001, IEEE J. Quantum Electron., 48, 1127

2000, J. Mater. Sci. Lett., 20, 465

2000, J. Non-Cryst. Solids, 278, 137, 10.1016/S0022-3093(00)00331-8

2001, Appl. Phys. Lett., 78, 1249, 10.1063/1.1350958

1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750

1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366

1996, IEEE J. Quantum Electron., 32, 2166, 10.1109/3.544764

1995, J. Non-Cryst. Solids, 182, 257, 10.1016/0022-3093(94)00513-3

1995, J. Non-Cryst. Solids, 185, 283, 10.1016/0022-3093(94)00700-4

1997, J. Appl. Phys., 82, 2759, 10.1063/1.366107

1994, Opt. Lett., 19, 1343, 10.1364/OL.19.001343

1997, Rev. Sci. Instrum., 68, 3447, 10.1063/1.1148307

1968, Phys. Rev., 174, 429, 10.1103/PhysRev.174.429

1974, Phys. Rev. B, 10, 5134, 10.1103/PhysRevB.10.5134

1999, J. Non-Cryst. Solids, 256&257, 143

1998, J. Non-Cryst. Solids, 238, 115, 10.1016/S0022-3093(98)00577-8

1980, J. Non-Cryst. Solids, 35&36, 1191

1996, J. Non-Cryst. Solids, 208, 29, 10.1016/S0022-3093(96)00511-X