Microwave Pretreatment for the Improvement of Physicochemical Properties of Carob Flour and Rice Starch–Based Electrospun Nanofilms
Tóm tắt
The aim of this study was to determine the effects of microwave pretreatment on physicochemical characteristics of carob flour and rice starch–based nanofibers produced by electrospinning. The effects of microwave heating on production of nanofibers by electrospinning have not been studied before. Another aim of the study was to fabricate and characterize nanofibers by using different carob flour concentrations (3%, 5% w/v) and rice starch (0.5% w/v). Films were characterized by scanning electron microscopy, water vapor permeability, X-ray diffraction, mechanical test, differential scanning calorimeter, and Fourier transform infrared spectrophotometer. Homogenous and bead-free fibers were obtained when microwave heating was used. Nanofibers originated from microwave-heated solution presented better characteristics in terms of water vapor permeability and mechanical properties as compared with conventionally heated ones. Microwave-heated solution had higher viscosity and available amino group amount as compared with conventionally heated solution. This study showed that microwave heating can be considered as a promising pretreatment method for electrospinning rather than conventional heating to be used in food packaging area.
Tài liệu tham khảo
Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135–143. https://doi.org/10.1016/j.foodhyd.2015.03.015.
Ali, A., Shahjahan, & Ansari, N. H. (2010). Density and viscosity of α-amino acids in aqueous solutions of cetyltrimethylammonium bromide. Russian Chemical Bulletin, 59(10), 1999–2004. https://doi.org/10.1007/s11172-010-0346-2.
Aydogdu, A., Sumnu, G., & Sahin, S. (2018a). A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 181(June 2017), 234–246. https://doi.org/10.1016/j.carbpol.2017.10.071.
Aydogdu, A., Sumnu, G., & Sahin, S. (2018b). A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 181(June 2017), 234–246. https://doi.org/10.1016/j.carbpol.2017.10.071.
Aydogdu, A., Yildiz, E., Aydogdu, Y., Sumnu, G., Sahin, S., & Ayhan, Z. (2019a). Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocolloids, 95(April), 245–255. https://doi.org/10.1016/j.foodhyd.2019.04.020.
Aydogdu, A., Yildiz, E., Ayhan, Z., Aydogdu, Y., Sumnu, G., & Sahin, S. (2019b). Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential applications in food industry. European Polymer Journal, 112(January), 477–486. https://doi.org/10.1016/j.eurpolymj.2019.01.006.
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004.
Bohr, H., & Bohr, J. (2000). Microwave-enhanced folding and denaturation of globular proteins. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(4), 4310–4314. https://doi.org/10.1103/PhysRevE.61.4310.
Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., Rocha, C. M. R., Avides, M. C., Quintas, M. A. C., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118. https://doi.org/10.1016/j.jfoodeng.2011.03.024.
Buffler, C. (1993). Microwave cooking and processing. New York: Springer UK.
Choi, I., Lee, S. E., Chang, Y., Lacroix, M., & Han, J. (2018). Effect of oxidized phenolic compounds on cross-linking and properties of biodegradable active packaging film composed of turmeric and gelatin. Lwt, 93(March), 427–433. https://doi.org/10.1016/j.lwt.2018.03.065.
Chuai, C., Almdal, K., Poulsen, L., & Plackett, D. (2001). Conifer fibers as reinforcing materials for polypropylene-based composites. Journal of Applied Polymer Science, 80(14), 2833–2841. https://doi.org/10.1002/app.1400.
Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2011). Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. LWT - Food Science and Technology, 44(2), 535–542. https://doi.org/10.1016/j.lwt.2010.07.006.
Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2013). High barrier polyhydroxyalcanoate food packaging film by means of nanostructured electrospun interlayers of zein. Food Hydrocolloids, 32(1), 106–114. https://doi.org/10.1016/j.foodhyd.2012.12.007.
Fabra, M. J., López-rubio, A., & Lagaron, J. M. (2015). Three-layer films based on wheat gluten and electrospun PHA. Food and Bioprocess Technology, 8, 2330–2340. https://doi.org/10.1007/s11947-015-1590-0.
Hadad, S., Amir, S., & Goli, H. (2019). Improving oxidative stability of flaxseed oil by encapsulation in electrospun flaxseed mucilage nanofiber. Food and Bioprocess Technology, 12, 829–838.
He, X., & Hwang, H. M. (2016). Nanotechnology in food science: functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24(4), 671–681. https://doi.org/10.1016/j.jfda.2016.06.001.
Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., & Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185(1), 12–21. https://doi.org/10.1016/j.jconrel.2014.04.018.
Juklíčková, M., Kubinová, Š., Širc, J., Zajícová, A., Hobzová, R., Michálek, J., et al. (2012). Morphological characterization of nanofibers: methods and application in practice. Journal of Nanomaterials, 2012, 1–14. https://doi.org/10.1155/2012/327369.
Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912–3918. https://doi.org/10.1021/jf011652p.
Lewandowicz, G., Fornal, J., & Walkowski, A. (1997). Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydrate Polymers, 34(4), 213–220. https://doi.org/10.1016/S0144-8617(97)00091-X.
Li, D., & Xia, Y. (2004). Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters, 4(5), 933–938. https://doi.org/10.1021/nl049590f.
Li, J. Y., & Yeh, A. I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50(3), 141–148. https://doi.org/10.1016/S0260-8774(00)00236-3.
Lim, S.-T., Jane, J.-L., Rajagopalan, S., & Seib, P. A. (1992). Effect of starch granule size on physical properties of starch-filled polyethylene film. Biotechnology Progress, 8(1), 51–57. https://doi.org/10.1021/bp00013a008.
Liu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. Journal of Controlled Release, 252, 95–107. https://doi.org/10.1016/j.jconrel.2017.03.016.
Liu, Y., Liang, X., Wang, S., Qin, W., & Zhang, Q. (2018). Electrospun antimicrobial polylactic acid/tea polyphenol nanofibers for food-packaging applications. Polymers, 10(5). https://doi.org/10.3390/polym10050561.
Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379–386. https://doi.org/10.1016/S0144-8617(02)00058-9.
Mamone, G., Sciammaro, L., De Caro, S., Di Stasio, L., Siano, F., Picariello, G., & Puppo, M. C. (2019). Comparative analysis of protein composition and digestibility of Ceratonia siliqua L. and Prosopis spp. seed germ flour. Food Research International, 120(February), 188–195. https://doi.org/10.1016/j.foodres.2019.02.035.
Manoj, B., & Kunjomana, A. G. (2012). Chemical leaching of an Indian bituminous coal and characterization of the products by vibrational spectroscopic techniques. International Journal of Minerals, Metallurgy, and Materials, 19(4), 279–283. https://doi.org/10.1007/s12613-012-0551-0.
Marques, P. T., Pérégo, C., Le Meins, J. F., Borsali, R., & Soldi, V. (2006). Study of gelatinization process and viscoelastic properties of cassava starch: effect of sodium hydroxide and ethylene glycol diacrylate as cross-linking agent. Carbohydrate Polymers, 66(3), 396–407. https://doi.org/10.1016/j.carbpol.2006.03.028.
Mendes, A. C., Stephansen, K., & Chronakis, I. S. (2017). Electrospinning of food proteins and polysaccharides. Food Hydrocolloids, 68, 53–68. https://doi.org/10.1016/j.foodhyd.2016.10.022.
Moomand, K., & Lim, L. T. (2015). Properties of encapsulated fish oil in electrospun zein fibres under simulated in vitro conditions. Food and Bioprocess Technology, 8(2), 431–444. https://doi.org/10.1007/s11947-014-1414-7.
Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328–1333. https://doi.org/10.1016/j.foodhyd.2008.09.002.
Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642–646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x.
Oguz, S., Tam, N., Aydogdu, A., Sumnu, G., & Sahin, S. (2018). Development of novel pea flour-based nanofibres by electrospinning method. International Journal of Food Science and Technology, 53(5), 1269–1277. https://doi.org/10.1111/ijfs.13707.
Özcan, M. M., Arslan, D., & Gökçalik, H. (2007). Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. International Journal of Food Sciences and Nutrition, 58(8), 652–658. https://doi.org/10.1080/09637480701395549.
Pielichowski, K., & Flejtuch, K. (2005). Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. Journal of Analytical and Applied Pyrolysis, 73(1), 131–138. https://doi.org/10.1016/j.jaap.2005.01.003.
Saba, N., Safwan, A., Sanyang, M. L., Mohammad, F., Pervaiz, M., Jawaid, M., Alothman, O. Y., & Sain, M. (2017). Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. International Journal of Biological Macromolecules, 102, 822–828. https://doi.org/10.1016/j.ijbiomac.2017.04.074.
Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., et al. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of Food Engineering, 222, 54–62. https://doi.org/10.1016/j.jfoodeng.2017.11.013.
Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay, R., Auddy, K., & Deuri, A. S. (2007). The morphology and mechanical properties of sodium alginate based electrospun poly(ethylene oxide) nanofiber. Polymer Engineering & Science, 47, 21–25. https://doi.org/10.1002/pen.
Shi, H., Yin, Y., & Jiao, S. (2014). Preparation and characterization of carboxymethyl starch under ultrasound-microwave synergistic interaction. Journal of Applied Polymer Science, 131(20), 1–8. https://doi.org/10.1002/app.40906.
Sim, L. H., Gan, S. N., Chan, C. H., & Yahya, R. (2010). ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76(3–4), 287–292. https://doi.org/10.1016/j.saa.2009.09.031.
Sivarooban, T., Hettiarachchy, N. S., & Johnson, M. G. (2008). Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Research International, 41(8), 781–785. https://doi.org/10.1016/j.foodres.2008.04.007.
Standard Test Methods for Water Vapor Transmission of Materials. (1995). Standard Test Methods for Water Vapor Transmission of Materials, 1, 1–8. http://www.arnisco.com/astm/PDF/E96.PDF. Accessed 10 July 2019
Sumnu, G. (2001). A review on microwave baking of foods. International Journal of Food Science and Technology, 36(2), 117–127. https://doi.org/10.1046/j.1365-2621.2001.00479.x.
Surov, O. V., Voronova, M. I., Afineevskii, A. V., & Zakharov, A. G. (2018). Polyethylene oxide films reinforced by cellulose nanocrystals: microstructure-properties relationship. Carbohydrate Polymers, 181(June 2017), 489–498. https://doi.org/10.1016/j.carbpol.2017.10.075.
Tam, N., Oguz, S., Aydogdu, A., Sumnu, G., & Sahin, S. (2017). Influence of solution properties and pH on the fabrication of electrospun lentil flour/HPMC blend nanofibers. Food Research International, 102(July), 616–624. https://doi.org/10.1016/j.foodres.2017.09.049.
Tavassoli-kafrani, E., Amir, S., Goli, H., & Fathi, M. (2018). Encapsulation of orange essential oil using cross-linked electrospun gelatin nanofibers. Food and Bioprocess Technology, 11, 427–434.
Uyar, T., & Besenbacher, F. (2009). Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers. European Polymer Journal, 45(4), 1032–1037. https://doi.org/10.1016/j.eurpolymj.2008.12.024.
Vega-Lugo, A. C., & Lim, L. T. (2012). Effects of poly(ethylene oxide) and pH on the electrospinning of whey protein isolate. Journal of Polymer Science, Part B: Polymer Physics, 50(16), 1188–1197. https://doi.org/10.1002/polb.23106.
Wang, N., Gao, Y. Z., Wang, P., Yang, S., Xie, T. M., & Xiao, Z. G. (2016). Effect of microwave modification on mechanical properties and structural characteristics of soy protein isolate and zein blended film. Czech Journal of Food Sciences, 34(2), 180–188. https://doi.org/10.17221/442/2015-CJFS.
Wang, W., Wang, H., Jin, X., Wang, H., Lin, T., & Zhu, Z. (2018). Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers. Polymer, 153(June), 643–652. https://doi.org/10.1016/j.polymer.2018.08.067.
Yan, Z., Wang, J., & Lu, J. (2002). Viscosity behavior of some α-amino acids and their groups in water-sodium acetate mixtures. Biophysical Chemistry, 99(3), 199–207. https://doi.org/10.1016/S0301-4622(02)00200-4.
Yousif, A. K., & Alghzawi, H. M. (2000). Processing and characterization of carob powder. Food Chemistry, 69(3), 283–287. https://doi.org/10.1016/S0308-8146(99)00265-4.
Zhao, B., Sun, S., Lin, H., Chen, L., Qin, S., Wu, W., et al. (2019). Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrasonics Sonochemistry, 52(October 2018), 50–61. https://doi.org/10.1016/j.ultsonch.2018.11.001.