Microvascular endowment in the developing chicken embryo lung

Andrew N. Makanya1, Ruslan Hlushchuk, Oliver Baum, N. Velinov, Mark W. Ochs, Valentin Djonov
1Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya

Tóm tắt

In the current study, the contribution of the major angiogenic mechanisms, sprouting and intussusception, to vascular development in the avian lung has been demonstrated. Sprouting guides the emerging vessels to form the primordial vascular plexus, which successively surrounds and encloses the parabronchi. Intussusceptive angiogenesis has an upsurge from embryonic day 15 (E15) and contributes to the remarkably rapid expansion of the capillary plexus. Increased blood flow stimulates formation of pillars (the archetype of intussusception) in rows, their subsequent fusion and concomitant delineation of slender, solitary vascular entities from the disorganized meshwork, thus crafting the organ-specific angioarchitecture. Morphometric investigations revealed that sprouting is preponderant in the early period of development with a peak at E15 but is subsequently supplanted by intussusceptive angiogenesis by the time of hatching. Quantitative RT-PCR revealed that moderate levels of basic FGF (bFGF) and VEGF-A were maintained during the sprouting phase while PDGF-B remained minimal. All three factors were elevated during the intussusceptive phase. Immunohistoreactivity for VEGF was mainly in the epithelial cells, whereas bFGF was confined to the stromal compartment. Temporospatial interplay between sprouting and intussusceptive angiogenesis fabricates a unique vascular angioarchitecture that contributes to the establishment of a highly efficient gas exchange system characteristic of the avian lung.

Từ khóa


Tài liệu tham khảo

10.1006/scdb.2001.0289

10.1046/j.1469-7580.2003.00137.x

10.1006/dbio.2001.0267

10.1016/S0012-1606(03)00042-3

10.1002/dvdy.20296

10.1002/dvdy.10162

10.1161/01.RES.0000182903.16652.d7

Bellairs R, Osmond M. The Atlas of Chick Development. London: Academic, 1998.

Betsholtz C, Lindblom P, Gerhardt H. Role of pericytes in vascular morphogenesis. EXS 94: 115–125, 2005.

10.1146/annurev.ph.54.030192.002031

10.1002/dvdy.20184

10.1002/(SICI)1097-0177(199703)208:3<398::AID-AJA10>3.0.CO;2-X

10.1038/nature04478

10.1016/S1359-6101(01)00031-4

10.1002/(SICI)1097-0177(200006)218:2<371::AID-DVDY10>3.0.CO;2-Z

10.1038/nmat818

10.1007/s100240010090

10.1165/ajrcmb.16.5.9160839

10.1161/01.CIR.87.4.1306

10.1007/s00441-003-0784-3

Djonov V, Makanya AN. New insights into intussusceptive angiogenesis. EXS 94: 17–33, 2005.

10.1002/dvdy.10119

10.1016/S0962-8924(03)00022-9

10.1002/bdrc.10003

10.1038/nature04483

10.3109/10623329909053409

10.1083/jcb.200302047

10.1111/j.1365-2818.1977.tb00062.x

10.1002/dvdy.20020

10.1046/j.1440-1681.2000.03341.x

10.1016/j.prrv.2004.11.009

10.1242/dev.01039

10.1242/dev.00733

Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131: 361–375, 2004.

10.1002/ar.1092220206

10.1016/S1095-6433(00)00218-X

10.1016/S0040-8166(03)00058-2

10.1007/s00429-003-0333-6

10.1016/j.tice.2003.11.002

10.1016/j.tice.2004.05.002

10.1002/dvdy.20627

10.1002/jemt.20169

10.1016/j.brainres.2004.04.016

10.1111/j.1749-6632.1990.tb13214.x

10.1016/j.cytogfr.2005.01.004

10.1159/000051070

10.1002/bies.10351

10.1076/ejom.36.4.0201

Tille JC, Wood J, Mandriota SJ, Schnell C, Ferrari S, Mestan J, Zhu Z, Witte L, Pepper MS. Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 299: 1073–1085, 2001.

10.1161/hh1101.091191

10.1016/S0925-4773(02)00451-3

West NH, Bamford OS, Jones DR. A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res 176: 553–564, 1977.

10.1007/s00114-003-0455-y

10.1038/nm0298-201