Microvascular and Structural Alterations of the Macula in Early to Moderate Glaucoma: An Optical Coherence Tomography-Angiography Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Medeiros, 2012, The structure and function relationship in glaucoma: Implications for detection of progression and measurement of rates of change, Investig. Ophthalmol. Vis. Sci., 53, 6939, 10.1167/iovs.12-10345
Lever, 2020, Individualized Significance of 24-Hour Intraocular Pressure Curves for Therapeutic Decisions in Primary Chronic Open-Angle Glaucoma Patients, Clin. Ophthalmol., 14, 1483, 10.2147/OPTH.S251333
Abe, 2015, The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression, Open Ophthalmol. J., 9, 78, 10.2174/1874364101509010078
Yoshikawa, 2014, Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography, Investig. Ophthalmol. Vis. Sci., 55, 477, 10.1167/iovs.13-11897
Enders, 2020, Analysis of peripapillary vessel density and Bruch’s membrane opening-based neuroretinal rim parameters in glaucoma using OCT and OCT-angiography, Eye, 34, 1086, 10.1038/s41433-019-0631-8
Unterlauft, J.D., Rehak, M., Böhm, M.R.R., and Rauscher, F.G. (2018). Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography. PLoS ONE, 13.
Lever, M., Halfwassen, C., Unterlauft, J.D., Bechrakis, N.E., Manthey, A., and Böhm, M.R.R. (2021). The Paediatric Glaucoma Diagnostic Ability of Optical Coherence Tomography: A Comparison of Macular Segmentation and Peripapillary Retinal Nerve Fibre Layer Thickness. Biology, 10.
Renard, 2019, Glaucoma progression analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT), J. Fr. Ophtalmol., 42, 499, 10.1016/j.jfo.2019.03.001
Sung, 2012, Macular assessment using optical coherence tomography for glaucoma diagnosis, Br. J. Ophthalmol., 96, 1452, 10.1136/bjophthalmol-2012-301845
Oddone, 2016, Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies, Ophthalmology, 123, 939, 10.1016/j.ophtha.2015.12.041
Jia, 2012, [BOE]2012 Quantitative OCT angiography of optic nerve.pdf. Biomed, Opt. Express, 3, 183
Xu, 2017, Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients, Zhonghua Yan Ke Za Zhi, 53, 98
Manalastas, 2017, Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes, J. Glaucoma, 26, 851, 10.1097/IJG.0000000000000768
Rao, H.L., Pradhan, Z.S., Weinreb, R.N., Riyazuddin, M., Dasari, S., Venugopal, J.P., Puttaiah, N.K., Rao, D.A.S., Devi, S., and Mansouri, K. (2017). A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE, 12.
Lommatzsch, 2018, OCTA vessel density changes in the macular zone in glaucomatous eyes, Graefes Arch. Clin. Exp. Ophthalmol., 256, 1499, 10.1007/s00417-018-3965-1
Shoji, 2017, Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study, Am. J. Ophthalmol., 182, 107, 10.1016/j.ajo.2017.07.011
Jeon, 2018, Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients, Sci. Rep., 8, 16009, 10.1038/s41598-018-34417-4
Mills, 2006, Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease, Am. J. Ophthalmol., 141, 24, 10.1016/j.ajo.2005.07.044
Curcio, 1990, Topography of ganglion cells in human retina, J. Comp. Neurol., 300, 5, 10.1002/cne.903000103
Kim, 2010, Structure–Function Relationship and Diagnostic Value of Macular Ganglion Cell Complex Measurement Using Fourier-Domain OCT in Glaucoma, Investig. Opthalmol. Vis. Sci., 51, 4646, 10.1167/iovs.09-5053
Hood, 2013, Glaucomatous damage of the macula, Prog. Retin. Eye Res., 32, 1, 10.1016/j.preteyeres.2012.08.003
Kuang, 2015, Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects, Ophthalmology, 122, 2002, 10.1016/j.ophtha.2015.06.015
Kass, 2002, The Ocular Hypertension Treatment Study, Arch. Ophthalmol., 120, 701, 10.1001/archopht.120.6.701
Cherecheanu, 2013, Ocular perfusion pressure and ocular blood flow in glaucoma, Curr. Opin. Pharmacol., 13, 36, 10.1016/j.coph.2012.09.003
Tobe, 2015, The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period, Br. J. Ophthalmol., 99, 609, 10.1136/bjophthalmol-2014-305780
Akil, H., Huang, A.S., Francis, B.A., Sadda, S.R., and Chopra, V. (2017). Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE, 12.
Takusagawa, 2017, Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma, Ophthalmology, 124, 1589, 10.1016/j.ophtha.2017.06.002
Ragkousis, 2020, Vessel Density around Foveal Avascular Zone as a Potential Imaging Biomarker for Detecting Preclinical Diabetic Retinopathy: An Optical Coherence Tomography Angiography Study, Semin. Ophthalmol., 35, 316, 10.1080/08820538.2020.1845386
Shahlaee, 2016, In Vivo Assessment of Macular Vascular Density in Healthy Human Eyes Using Optical Coherence Tomography Angiography, Am. J. Ophthalmol., 165, 39, 10.1016/j.ajo.2016.02.018
Lommatzsch, 2020, Does the Foveal Avascular Zone Change in Glaucoma?, Klin. Monbl. Augenheilkd., 237, 879