Microvascular and Structural Alterations of the Macula in Early to Moderate Glaucoma: An Optical Coherence Tomography-Angiography Study

Journal of Clinical Medicine - Tập 10 Số 21 - Trang 5017
M. J. Lever1,2, Moritz Glaser1, Ying Chen1,2, Christian Halfwassen1,2, Jan Darius Unterlauft3, Nikolaos E. Bechrakis1,2, Michael R. R. Böhm1,2
1Achim Wessing Institute for Imaging in Ophthalmology, University Hospital Essen, 45147 Essen, Germany
2Department of Ophthalmology, University Hospital Essen, 45147 Essen, Germany
3University Hospital of Ophthalmology, Inselspital, 3010 Bern, Switzerland

Tóm tắt

In glaucoma, macular optical coherence tomography (OCT) typically shows a thinning of the three inner segments and OCT-angiography (OCTA) a reduction of the vascular density (VD). It is still unclear if glaucoma directly affects macular VD. This retrospective study included 31 glaucoma patients of early and moderate stage (GS1, GS2, Mills et al.) and 39 healthy individuals. Macular segments’ thickness and superficial and deep plexus vascular density (VD) were obtained using spectral-domain OCT and OCTA, respectively. One-way analysis of variance (ANOVA) was used to compare healthy controls and glaucoma patients according to their glaucoma stage. Using correlation analyses, the association between glaucoma and either OCT or OCTA parameters was evaluated. A glaucoma stage-stratified linear regression analysis was then performed. Inner macular segment and whole retinal thickness were reduced in GS1 and GS2 patients compared to healthy controls (e.g., ganglion cell layer GCL: controls: 47.9 ± 7.4, GS1: 45.8 ± 5.1, GS2: 30.6 ± 9.4, ANOVA: p < 0.0001). Regarding OCTA-parameters, the VD of both segmentation levels was reduced in glaucoma patients, particularly when comparing GS2 patients with controls (superficial plexus: p = 0.004) and GS2 with GS1 (p = 0.0008). Linear regression revealed an association between these parameters and the presence of glaucoma (for superior plexus: R2 = 0.059, p = 0.043). Finally, a correlation between macular segment thickness and VD was observed, but with a strength increasing with glaucoma severity (GCL and superior plexus VD: controls: R2 = 0.23, GS1 R2 = 0.40, GS2 R2 = 0.76). Despite the glaucoma-independent correlation between macular segment thickness and VD, disease severity strengthens this correlation. This consideration suggests that glaucoma directly influences OCT and OCTA parameters individually.

Từ khóa


Tài liệu tham khảo

Medeiros, 2012, The structure and function relationship in glaucoma: Implications for detection of progression and measurement of rates of change, Investig. Ophthalmol. Vis. Sci., 53, 6939, 10.1167/iovs.12-10345

Lever, 2020, Individualized Significance of 24-Hour Intraocular Pressure Curves for Therapeutic Decisions in Primary Chronic Open-Angle Glaucoma Patients, Clin. Ophthalmol., 14, 1483, 10.2147/OPTH.S251333

Abe, 2015, The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression, Open Ophthalmol. J., 9, 78, 10.2174/1874364101509010078

Yoshikawa, 2014, Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography, Investig. Ophthalmol. Vis. Sci., 55, 477, 10.1167/iovs.13-11897

Enders, 2020, Analysis of peripapillary vessel density and Bruch’s membrane opening-based neuroretinal rim parameters in glaucoma using OCT and OCT-angiography, Eye, 34, 1086, 10.1038/s41433-019-0631-8

Unterlauft, J.D., Rehak, M., Böhm, M.R.R., and Rauscher, F.G. (2018). Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography. PLoS ONE, 13.

Lever, M., Halfwassen, C., Unterlauft, J.D., Bechrakis, N.E., Manthey, A., and Böhm, M.R.R. (2021). The Paediatric Glaucoma Diagnostic Ability of Optical Coherence Tomography: A Comparison of Macular Segmentation and Peripapillary Retinal Nerve Fibre Layer Thickness. Biology, 10.

Renard, 2019, Glaucoma progression analysis by Spectral-Domain Optical Coherence Tomography (SD-OCT), J. Fr. Ophtalmol., 42, 499, 10.1016/j.jfo.2019.03.001

Sung, 2012, Macular assessment using optical coherence tomography for glaucoma diagnosis, Br. J. Ophthalmol., 96, 1452, 10.1136/bjophthalmol-2012-301845

Oddone, 2016, Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies, Ophthalmology, 123, 939, 10.1016/j.ophtha.2015.12.041

Lommatzsch, 2020, OCT Angiography, Klin. Monbl. Augenheilkd., 237, 95, 10.1055/a-1023-9678

Jia, 2012, [BOE]2012 Quantitative OCT angiography of optic nerve.pdf. Biomed, Opt. Express, 3, 183

Xu, 2017, Study of retinal microvascular perfusion alteration and structural damage at macular region in primary open-angle glaucoma patients, Zhonghua Yan Ke Za Zhi, 53, 98

Manalastas, 2017, Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes, J. Glaucoma, 26, 851, 10.1097/IJG.0000000000000768

Rao, H.L., Pradhan, Z.S., Weinreb, R.N., Riyazuddin, M., Dasari, S., Venugopal, J.P., Puttaiah, N.K., Rao, D.A.S., Devi, S., and Mansouri, K. (2017). A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE, 12.

Lommatzsch, 2018, OCTA vessel density changes in the macular zone in glaucomatous eyes, Graefes Arch. Clin. Exp. Ophthalmol., 256, 1499, 10.1007/s00417-018-3965-1

Shoji, 2017, Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study, Am. J. Ophthalmol., 182, 107, 10.1016/j.ajo.2017.07.011

Jeon, 2018, Effect of Macular Vascular Density on Central Visual Function and Macular Structure in Glaucoma Patients, Sci. Rep., 8, 16009, 10.1038/s41598-018-34417-4

Mills, 2006, Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease, Am. J. Ophthalmol., 141, 24, 10.1016/j.ajo.2005.07.044

Curcio, 1990, Topography of ganglion cells in human retina, J. Comp. Neurol., 300, 5, 10.1002/cne.903000103

Kim, 2010, Structure–Function Relationship and Diagnostic Value of Macular Ganglion Cell Complex Measurement Using Fourier-Domain OCT in Glaucoma, Investig. Opthalmol. Vis. Sci., 51, 4646, 10.1167/iovs.09-5053

Hood, 2013, Glaucomatous damage of the macula, Prog. Retin. Eye Res., 32, 1, 10.1016/j.preteyeres.2012.08.003

Kuang, 2015, Estimating lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects, Ophthalmology, 122, 2002, 10.1016/j.ophtha.2015.06.015

Kass, 2002, The Ocular Hypertension Treatment Study, Arch. Ophthalmol., 120, 701, 10.1001/archopht.120.6.701

Cherecheanu, 2013, Ocular perfusion pressure and ocular blood flow in glaucoma, Curr. Opin. Pharmacol., 13, 36, 10.1016/j.coph.2012.09.003

Tobe, 2015, The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period, Br. J. Ophthalmol., 99, 609, 10.1136/bjophthalmol-2014-305780

Akil, H., Huang, A.S., Francis, B.A., Sadda, S.R., and Chopra, V. (2017). Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE, 12.

Takusagawa, 2017, Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma, Ophthalmology, 124, 1589, 10.1016/j.ophtha.2017.06.002

Ragkousis, 2020, Vessel Density around Foveal Avascular Zone as a Potential Imaging Biomarker for Detecting Preclinical Diabetic Retinopathy: An Optical Coherence Tomography Angiography Study, Semin. Ophthalmol., 35, 316, 10.1080/08820538.2020.1845386

Shahlaee, 2016, In Vivo Assessment of Macular Vascular Density in Healthy Human Eyes Using Optical Coherence Tomography Angiography, Am. J. Ophthalmol., 165, 39, 10.1016/j.ajo.2016.02.018

Lommatzsch, 2020, Does the Foveal Avascular Zone Change in Glaucoma?, Klin. Monbl. Augenheilkd., 237, 879