Microtubules Have Opposite Orientation in Axons and Dendrites of Drosophila Neurons

Molecular Biology of the Cell - Tập 19 Số 10 - Trang 4122-4129 - 2008
Michelle C. Stone1, Fabrice Roegiers2, Melissa M. Rolls3
1Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
2Institute for Cancer Research, Fox Chase Cancer Center , Philadelphia , PA , 19111
3*Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; and

Tóm tắt

In vertebrate neurons, axons have a uniform arrangement of microtubules with plus ends distal to the cell body (plus-end-out), and dendrites have equal numbers of plus- and minus-end-out microtubules. To determine whether microtubule orientation is a conserved feature of axons and dendrites, we analyzed microtubule orientation in invertebrate neurons. Using microtubule plus end dynamics, we mapped microtubule orientation in Drosophila sensory neurons, interneurons, and motor neurons. As expected, all axonal microtubules have plus-end-out orientation. However, in proximal dendrites of all classes of neuron, ∼90% of dendritic microtubules were oriented with minus ends distal to the cell body. This result suggests that minus-end-out, rather than mixed orientation, microtubules are the signature of the dendritic microtubule cytoskeleton. Surprisingly, our map of microtubule orientation predicts that there are no tracks for direct cargo transport between the cell body and dendrites in unipolar neurons. We confirm this prediction, and validate the completeness of our map, by imaging endosome movements in motor neurons. As predicted by our map, endosomes travel smoothly between the cell body and axon, but they cannot move directly between the cell body and dendrites.

Từ khóa


Tài liệu tham khảo

Alberts B., 2002, Molecular Biology of the Cell

Baas P. W., 1988, Proc. Natl. Acad. Sci. USA, 85, 8335, 10.1073/pnas.85.21.8335

Baas P. W., 1987, Proc. Natl. Acad. Sci. USA, 84, 5272, 10.1073/pnas.84.15.5272

Black M. M., 1989, Trends Neurosci, 12, 211, 10.1016/0166-2236(89)90124-0

Burack M. A., 2000, Neuron, 26, 465, 10.1016/S0896-6273(00)81178-2

Burton P. R., 1988, Brain Res, 473, 107, 10.1016/0006-8993(88)90321-6

Burton P. R., 1981, Proc. Natl. Acad. Sci. USA, 78, 3269, 10.1073/pnas.78.5.3269

Clyne P. J., 2003, Genetics, 165, 1433, 10.1093/genetics/165.3.1433

Craig A. M., 1994, Annu. Rev. Neurosci, 17, 267, 10.1146/annurev.ne.17.030194.001411

Dombeck D. A., 2003, Proc. Natl. Acad. Sci. USA, 100, 7081, 10.1073/pnas.0731953100

Erez H., 2007, J. Cell Biol, 176, 497, 10.1083/jcb.200607098

Fujioka M., 2003, Development, 130, 5385, 10.1242/dev.00770

Heidemann S. R., 1981, J. Cell Biol, 91, 661, 10.1083/jcb.91.3.661

Hirokawa N., 2005, Nat. Rev. Neurosci, 6, 201, 10.1038/nrn1624

Kennedy M. J., 2006, Annu. Rev. Neurosci, 29, 325, 10.1146/annurev.neuro.29.051605.112808

Kiehart D. P., 1994, Drosophila melanogaster: practical uses in cellular and molecular biology, 507

Levy J. R., 2006, Int. J. Dev. Neurosci, 24, 103, 10.1016/j.ijdevneu.2005.11.013

Liu Z., 2000, Nat. Cell Biol, 2, 776, 10.1038/35041011

Rolls M. M., 2007, Neural Dev, 2, 7, 10.1186/1749-8104-2-7

Rosales C. R., 2005, Eur. J. Neurosci, 22, 2381, 10.1111/j.1460-9568.2005.04400.x

Sanchez-Soriano N., 2005, Biol, 288, 126

Setou M., 2004, J. Neurobiol, 58, 201, 10.1002/neu.10324

Setou M., 2000, Science, 288, 1796, 10.1126/science.288.5472.1796

Setou M., 2002, Nature, 417, 83, 10.1038/nature743

Sharp D. J., 1997, J. Cell Biol, 138, 833, 10.1083/jcb.138.4.833

10.1091/mbc.e05-04-0338

Stepanova T., 2003, J. Neurosci, 23, 2655, 10.1523/JNEUROSCI.23-07-02655.2003

Sweeney N. T., 2006, Curr. Biol, 16, 1006, 10.1016/j.cub.2006.03.067

Troutt L. L., 1988, J. Neurosci, 8, 2371, 10.1523/JNEUROSCI.08-07-02371.1988

Welte M. A., 2004, Curr. Biol, 14, R525, 10.1016/j.cub.2004.06.045

Xu X., 2006, J. Cell Sci, 119, 452, 10.1242/jcs.02750

Yu W., 2000, J. Neurosci, 20, 5782, 10.1523/JNEUROSCI.20-15-05782.2000