Microstructure and Grain Orientation Evolution in Sn-3.0Ag-0.5Cu Solder Interconnects Under Electrical Current Stressing

Journal of Electronic Materials - Tập 44 - Trang 3880-3887 - 2015
Hongtao Chen1, Chunjin Hang2, Xing Fu1, Mingyu Li1,2
1Shenzhen Key Laboratory of Advanced Materials, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
2State Key Laboratory of Advanced Welding Joining, Harbin Institute of Technology, Harbin, China

Tóm tắt

In situ observation was performed on cross-sections of Sn-3.0Ag-0.5Cu solder interconnects to track the evolution of microstructure and grain orientation under electrical current stressing. Cross-sections of Cu/Ni–Sn-3.0Ag-0.5Cu–Ni/Cu sandwich-structured solder interconnects were prepared by the standard metallographic method and subjected to electrical current stressing for different times. The electron backscatter diffraction technique was adopted to characterize the grain orientation and structure of the solder interconnects. The results show that metallization dissolution and intermetallic compound (IMC) migration have close relationships with the grain orientation and structure of the solder interconnects. Ni metallization dissolution at the cathode interface and IMC migration in the solder bulk can be accelerated when the c-axis of the grain is parallel to the electron flow direction, while no observable change was found when the c-axis of the grain was perpendicular to the electron flow direction. IMC can migrate along or be blocked at the grain boundary, depending on the misorientation between the current flow direction and grain boundary.

Tài liệu tham khảo

S.W. Liang, C. Chen, J.K. Han, L.H. Xu, K.N. Tu, and Y.S. Lai, J. Appl. Phys. 107, 093715 (2010). F. Ren, J.W. Nah, K.N. Tu, B.S. Xiong, L.H. Xu, and J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006). J.Q. Chen, J.D. Guo, K.L. Liu, and J.K. Shang, J. Appl. Phys. 114, 153509 (2013). H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005). T. Tian, F. Xu, J.K. Han, D. Choi, Y. Cheng, L. Helfen, M.D. Michiel, T. Baumbach, and K.N. Tu, Appl. Phys. Lett. 99, 082114 (2011). J.W. Nah, F. Ren, K.N. Tu, S. Venk, and G. Camara, J. Appl. Phys. 99, 023520 (2006). Y.C. Chan and D. Yang, Prog. Mater. Sci. 55, 428–475 (2010). E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002). M.H. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008). Y.W. Wang, K.H. Lu, V. Gupta, L. Stiborek, D. Shirley, S.H. Chae, J. Im, and P.S. Ho, J. Mater. Res. 27, 1131–1141 (2012). H.M. Tong, Y.S. Lai, and C.P. Wong, Advanced Flip Chip Packaging (New York: Springer, 2013). H.T. Chen, J. Han, J. Li, and M.Y. Li, Microelectron. Reliab. 52, 1112–1120 (2012). B. Zhou, T.R. Bieler, T.K. Lee, and K.C. Liu, J. Electron. Mater. 39, 2669–2679 (2010). T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370–381 (2008). B. Zhou, Q. Zhou, T.R. Bieler, and T.K. Lee, J. Electron. Mater. 44, 895–908 (2015). T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scripta Mater. 80, 37–40 (2014). B.F. Dyson, T.R. Anthony, and D. Turnbull, J. Appl. Phys. 38, 3408 (1967). D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469–1472 (1984). A.T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, Appl. Phys. Lett. 85, 2490 (2004). K. Yamanaka, Y. Tsukada, and K. Suganuma, Scripta Mater. 55, 867–870 (2006). A.T. Wu, A.M. Gusak, and K.N. Tu, Appl. Phys. Lett. 86, 241902 (2005). L. Tasooji and K.Lee Lara, J. Electron. Mater. 43, 4386–4394 (2014). H.J. Ji, Q. Wang, M.Y. Li, and C.Q. Wang, J. Electron. Mater. 43, 2467–2478 (2014). B. Arfaei, N. Kim, and E.J. Cotts, J. Electron. Mater. 41, 362–374 (2012).