Microstructure Engineered Ni‐Rich Layered Cathode for Electric Vehicle Batteries

Advanced Energy Materials - Tập 11 Số 25 - 2021
Un‐Hyuck Kim1, Jeong‐Hyeon Park1, Assylzat Aishova1, Rogério M. Ribas2, Robson S. Monteiro2, Kent J. Griffith3, Chong Seung Yoon4, Yang‐Kook Sun1
1Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea
2Companhia Brasileira de Metalurgia e Mineração (CBMM) Araxá Minas Gerais 38183‐903 Brazil
3Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208 USA
4Department of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea

Tóm tắt

AbstractThe Nb doping of Li[Ni0.855Co0.13Al0.015]O2 (NCA85) modifies its primary particle morphology to allow precise tailoring of its microstructure. The Nb dopant (1 mol%) elongates the primary particles and aligns them in the radial direction, creating a configuration that effectively dissipates the abrupt internal strain caused by H2↔H3 phase transitions near the charge end. The negation of the internal strain substantially improves the long‐term cycling stability achieved by the Nb‐doped NCA85 cathode; it retains 90% of its initial capacity after 1000 cycles while an undoped cathode retains 57.3%. Moreover, the enhanced mechano‐chemical stability of the Nb‐doped NCA85 cathode enables fast charging; accordingly, the Nb‐doped NCA85 cathode cycles stably for 500 cycles even when charged at 3 C (full charge is achieved in 20 min). The Nb‐doped cathode also demonstrates enhanced chemical and structural stability during calendar aging and under thermal load. The simple strategy of introducing Nb ions during the lithiation of NCA85, proposed in this paper, represents an effective solution that guarantees sufficient battery life, fast charging, and safety without compromising battery capacity for next‐generation electric vehicles.

Từ khóa


Tài liệu tham khảo

10.1039/C5TA00361J

10.1007/s41918-018-0022-z

10.1039/D0EE03581E

10.1039/C6TA09921A

10.1002/aenm.202002027

10.1021/acsenergylett.9b02302

10.1016/j.jpowsour.2014.02.018

10.1149/2.073207jes

10.1002/aenm.201300015

10.1038/ncomms14101

10.1021/acs.jpcc.6b12885

10.1021/acs.chemmater.7b05269

10.1021/acsenergylett.9b00733

10.1021/acsami.9b09754

10.1002/aenm.201803902

10.1149/1.1837968

10.1021/am506712c

10.20964/2017.06.19

10.1016/j.jpowsour.2018.06.052

10.1038/s41560-018-0191-3

10.1039/C8SC03385D

10.1021/acsenergylett.8b02499

10.1021/acsaem.9b02372

10.1021/acsaem.9b00767

10.1016/j.ensm.2020.02.028

10.1002/adfm.201808825

10.1038/nmat2418

10.1021/acs.chemmater.7b04047

10.1021/acsenergylett.0c00191

10.1021/acsenergylett.0c02281

10.1021/acsaem.9b01116

10.1021/acsnano.0c06910

10.1002/aenm.201801202

10.1016/j.mattod.2020.01.019

10.1038/s41560-020-00693-6

10.1107/S0567739476001551

10.1016/0025-5408(90)90028-Z

10.1149/1.1836614

10.1002/aenm.202003767

10.1149/2.0731910jes