Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs

Journal of Computational Chemistry - Tập 14 Số 2 - Trang 161-185 - 1993
Frederick S. Lee1, Zhen T. Chu1, Arieh Warshel1
1Department of Chemistry, University of Southern California, Los Angeles, California 90089–1062

Tóm tắt

AbstractDifferent microscopic and semimicroscopic approaches for calculations of electrostatic energies in macromolecules are examined. This includes the Protein Dipoles Langevin Dipoles (PDLD) method, the semimicroscopic PDLD (PDLD/S) method, and a free energy perturbation (FEP) method. The incorporation of these approaches in the POLARIS and ENZYMIX modules of the MOLARIS package is described in detail. The PDLD electrostatic calculations are augmented by estimates of the relevant hydrophobic and steric contributions, as well as the effects of the ionic strength and external pH. Determination of the hydrophobic energy involves an approach that considers the modification of the effective surface area of the solute by local field effects. The steric contributions are analyzed in terms of the corresponding reorganization energies. Ionic strength effects are studied by modeling the ionic environment around the given system using a grid of residual charges and evaluating the relevant interaction using Coulomb's law with the dielectric constant of water. The performance of the FEP calculations is significantly enhanced by using special boundary conditions and evaluating the long‐range electrostatic contributions using the Local Reaction Field (LRF) model. A diverse set of electrostatic effects are examined, including the solvation energies of charges in proteins and solutions, energetics of ion pairs in proteins and solutions, interaction between surface charges in proteins, and effect of ionic strength on such interactions, as well as electrostatic contributions to binding and catalysis in solvated proteins. Encouraging results are obtained by the microscopic and semimicroscopic approaches and the problems associated with some macroscopic models are illustrated. The PDLD and PDLD/S methods appear to be much faster than the FEP approach and still give reasonable results. In particular, the speed and simplicity of the PDLD/S method make it an effective strategy for calculations of electrostatic free energies in interactive docking studies. Nevertheless, comparing the results of the three approaches can provide a useful estimate of the accuracy of the calculated energies. © 1993 John Wiley & Sons, Inc.

Từ khóa


Tài liệu tham khảo

10.1126/science.694508

10.1073/pnas.75.11.5250

10.1017/S0033583500005333

10.1146/annurev.bb.20.060191.001411

10.1016/0079-6107(85)90001-X

10.1146/annurev.bb.19.060190.001505

10.1073/pnas.81.15.4785

10.1063/1.461760

10.1016/0022-2836(76)90311-9

10.1016/0022-2836(85)90411-5

10.1002/prot.340050109

10.1021/j100368a005

10.1021/cr00101a005

Papazyan A., 1991, J. Chem. Phys., 95, 9219, 10.1063/1.461203

Warshel A., 1989, Computer Simulation of Biomolecular Systems, 120

10.1002/jcc.540130212

10.1063/1.462997

10.1016/0022-2836(92)90546-V

10.1021/j100475a014

10.1021/j100233a010

10.1002/qua.560420520

10.1002/bip.360221103

10.1002/bip.360310304

10.1111/j.1751-1097.1979.tb07148.x

Warshel A., 1980, Meth. Enzymol., 127, 578, 10.1016/0076-6879(86)27045-7

Beroza P., 1991, Proc. Natl. Acad. Sci. USA, 88, 5801, 10.1073/pnas.88.13.5804

10.1021/bi00374a006

10.1063/1.456845

10.1016/0009-2614(84)80098-6

10.1016/0009-2614(85)80259-1

10.1093/protein/5.3.215

10.1063/1.1740409

Valleau J.P., 1977, Modern Theoretical Chemistry, 169

10.1039/fs9821700055

10.1021/j100209a016

Warshel A., 1984, Pontif. Acad. Sci. Scr. Var., 55, 59

10.1021/ja00273a048

10.1038/328551a0

10.1146/annurev.bb.18.060189.002243

10.1021/bi00435a001

10.1021/ja01577a001

10.1021/j100384a009

10.1021/cr60274a001

Hansch C., 1979, Substituent Constant for Correlation Analysis in Chemistry and Biology

10.1021/bi00514a028

10.1146/annurev.bb.15.060186.001115

10.1021/bi00355a035

10.1016/S0006-3495(89)82662-1

10.1007/BF01870364

Forsén S., 1988, Eur. J. Biochem., 177, 47, 10.1111/j.1432-1033.1988.tb14343.x

10.1021/bi00605a002

10.1021/bi00264a020

10.1126/science.2727695

10.1021/ja00009a053

10.1016/0022-2836(87)90360-3

10.1038/330084a0

10.1016/0022-2836(72)90513-X

10.1021/ar50123a006

10.1021/bi00504a009

Warshel A., 1986, J. Am. Chem. Soc., 108, 6571, 10.1021/ja00281a021

10.1016/0022-2836(88)90445-7

10.1038/332564a0

10.1016/0019-2791(77)90346-9

Friedman H.L., 1973, Water—A Comprehensive Treatise, 54

Noyes R.M., 1976, J. Am. Chem. Soc., 84, 513, 10.1021/ja00863a002

Rossinsky D.R., 1965, Chem. Rev., 65, 467, 10.1021/cr60236a004

Miller W.A., 1967, J. Am. Chem. Soc., 86, 6051

10.1063/1.447824

Taft R.W., Progress in Physical Organic Chemistry, 247

Aue D.H., 1984, J. Am. Chem. Soc., 98, 318, 10.1021/ja00418a002

Klots C.E., 1984, J. Phys. Chem., 85, 3585, 10.1021/j150624a013

10.1021/ja00280a002

10.1007/BF00646936

10.1126/science.3576184

10.1021/ja00022a017

10.1021/ja00193a003

10.1063/1.460608

10.1063/1.461148