Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat
Tóm tắt
The use of higher plants as the basis for a biological life support system that regenerates the atmosphere, purifies water, and produces food has been proposed for long duration space missions. The objective of these experiments was to determine what effects microgravity (μg) had on chloroplast development, carbohydrate metabolism and gene expression in developing leaves of Triticum aestivum L. cv. USU Apogee. Gravity naive wheat plants were sampled from a series of seven 21-day experiments conducted during Increment IV of the International Space Station. These samples were fixed in either 3% glutaraldehyde or RNAlater™ or frozen at −25°C for subsequent analysis. In addition, leaf samples were collected from 24- and 14-day-old plants during the mission that were returned to Earth for analysis. Plants grown under identical light, temperature, relative humidity, photoperiod, CO2, and planting density were used as ground controls. At the morphological level, there was little difference in the development of cells of wheat under μg conditions. Leaves developed in μg have thinner cross-sectional area than the 1 g grown plants. Ultrastructurally, the chloroplasts of μg grown plants were more ovoid than those developed at 1 g, and the thylakoid membranes had a trend to greater packing density. No differences were observed in the starch, soluble sugar, or lignin content of the leaves grown in μg or 1 g conditions. Furthermore, no differences in gene expression were detected leaf samples collected at μg from 24-day-old leaves, suggesting that the spaceflight environment had minimal impact on wheat metabolism.
Tài liệu tham khảo
Adamchuk NI, Mikaylenko NF, Zolotareva EK, Hilaire E, Guikema JA (1999) Spaceflight effects on structural and some biochemical parameters of Brassica rapa photosynthetic apparatus. J Gravitat Physiol 6:95–96
Aliyev AA, Abilov ZK, Mahinksy AL, Ganiyeva RA, Ragimova GK (1987) The ultrastructure and physiological characteristics of the photosynthesis system of shoots of garden pea grown for 29 days on the “Salyut-7” space station. USSR Space Life Sci Digest 10:15–16
Blakeney AB, Harris PJ, Henery RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299
Brown CS, Tibbitts TW, Croxdale JG, Wheeler RM (1997) Potato tuber formation in the spaceflight environment. Life Support Biosph Sci 4:71–76
Brown CS, Tripathy BC, Stutte GW (1996) Photosynthesis and carbohydrate metabolism in microgravity. In: Suge H (ed) Plants in space biology. Institute of Ecology, pp 127–134
Brown CS, Piastuch WC (1994) Starch metabolism in germinating soybean cotyledons is sensitive to clinorotation and centrifugation. Plant Cell Environ 17:341–344
Bugbee B, Koerner G (1997) Yield comparisons and unique characteristics of the dwarf wheat cultivar “USU-Apogee”. Adv Space Res 20:1891–1894
Cook ME, Croxdale JM (2003) Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions. J Exp Bot 54:2157–2164
Cowles JR, Scheld HW, LeMay R, Peterson C (1984) Experiments on plants grown in space: growth and lignification in seedlings exposed to eight days of microgravity. Ann bot [Supple 3] 54:33–48
Croxdale JM, Cook ME, Tibbitts TW, Brown CS, Wheeler RM (1997) Structure of potato tubers formed during spaceflight. J Exp Bot 48:2037–2043
Eley JH, Myers J (1964) Study of a photosynthetic gas exchanger: a quantitative repetition of the Priestley experiment. Tex J Sci 16:296–333
Fukushima RS, Hatfield RD (2001) Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 49:3133–3139
Fukushima RS, Hatfield RD (2004) Comparison of the acetyl bromide spectrophotmeteric method with other lignin methods for determining lignin concentration in forage samples. J Agric Food Chem 52:3713–3720
Halstead TW, Dutcher FR (1987) Plants in space. Ann Rev Plant Phys 38:317–345
Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839
Hegde P, Rong Q, Abernathy K, Gay C, Dharap S, Gaspard R, Earle-Huges J, Snesrud E, Lee N, Quackenbush J (2000) A concise guide to cDNA microarray analysis-II. Biotechniques 29:548–562
Hoson T, Soga K, Mori R, Asiki M, Nakamura Y, Wakabayashi K, Kamisaka S (2002) Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol 43:1067–1071
Hoson T, Soga K, Wakabayashi K, Kamisaka S, Tanimoto E (2003) Growth and cell wall changes in rice roots during spaceflight. Plant Soil 255:19–26
Iverson JT, Crabb TM, Morrow RC, Lee MC (2003) Biomass production system hardware performance. SAE Technical Paper 2003-01-2484
Jiao S, Hilaire E, Paulsen AQ, Guikema JA (1999) Ultrastructural observation of chloroplast morphology in space-grown Brassica rapa cotyledons. J Grav Physiol 6:93–94
Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136:2790–2805
Kordyum EL, Nedukha EM, Sytnik KM, Mashinsky AL (1981) Optical and electron-microscopic studies of the Funaria hygrometrica protonema after cultivation for 96 days in space. Adv Space Res 1:159–162
Kraft TFB, van Loon JJWA, Kiss JZ (2000) Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta 211:415–422
Kuang A, Xiao Y, Musgrave ME (1996) Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions. Ann Bot 78:343–351
Levine LL, Heyenga AG, Levine HG, Choi J-W, Davin LB, Krikorian AD, Lewis NG (2001) Cell-wall architecture and lignin composition of wheat developed in a micro gravity environment. Phytochemistry 57:835–846
Liu F, VanToai T, Moy LP, Bock G, Linfor LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129
Miller RL, Ward CH (1966) Algal bioregenerative sytems. In: Kammermeyer E (ed) Atmosphere in space cabins and closed environments. Appleton-Century-Croft Pub, New York
Moseyko N, Zhu T, Chang H-S, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130:720–728
Merkys AJ, Laurinavičius RS, Jarosius AV, Rupainiene OJ (1987) Growth, development, anatomy and morphological structure of Arabidopsis thaliana (l.) Heynh. under spaceflight conditions. Institute of Botany, Academy of Science of the Lithuanian SSR, Vilnius, pp 105–116
Monje O, Bugbee B (1998) Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ 21:315–324
Monje O, Stutte GW, Goins GD, Porterfield DM, Bingham GE (2003) Farming in space: environmental and biophysical concerns. Adv Space Res 31:151–167
Monje O, Stutte GW, Chapman D (2005) Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration. Planta 222:336–345
Monje O, Wang HT, Kelly C, Stutte GW (2001) Nutrient delivery system water pressures affect growth rate by changes in leaf area, not single leaf photosynthesis. SAE Technical Paper 2001-02-2207
Moore R, Fondren WM, McClelen CE, Wang C-L (1987) Influence of microgravity on cellular differentiation in root caps of Zea mays. Am J Bot 74:1006–1007
Morrow RC, Crabb TM (2000) Biomass production system (BPS) plant growth unit. Adv Space Res 26:289–298
Musgrave ME, Kuang A, Matthews SW (1997) Plant reproduction during spaceflight: importance of the gaseous environment. Planta 203:S177–184
Musgrave ME, Kuang A, Brown CS, Matthews S (1998) Changes in Arabidopsis leaf ultrastructure, chlorophyll content and carbohydrate content during spaceflight depend on ventilation. Ann Bot 81:503–512
Myers J (1954) Basic remarks on the use of plants as biological gas exchanges in a closed system. J Aviat Med 35:507–411
Nechitailo GS, Mashinsky AL (1993) Space biology: studies at orbital stations. Mir Publishers, Moscow
Nedukha EM (1996) Possible mechanisms of plant cell wall changes at microgravity. Adv Space Res 1:109–111
Nedukha OM (1997) Effects of weightlessness on photosynthesizing cells structure of plants. J Gravit Physiol 4:79–80
Paul A-L, Daugherty CJ, Bihn EA, Chapman DK, Norwood KLL, Ferl RJ (2001) Transgene expression patterns indicates that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiol 126:613–621
Paul A-L, Levine HG, McLamb W, Norwood KL, Reed D, Stutte GW, Wells HW, Ferl RJ (2005a) Plant molecular biology in the space station ere: utilization of KSC fixation tubes with RNALater. Acta Astronaut 56:623–628
Paul A-L, Popp MP, Gurley WB, Guy C, Norwood KL, Ferl RJ (2005b) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36:1175–1181
Paul A-L, Schuerger AC, Popp M, Richards JT, Manak M, Ferl RJ (2004) Arabidopsis gene expression at low atmospheric pressure—hypobaria does not equal hypoxia. Plant Physiol 134:215–223
Porterfield DM (2002) The biophysical limitations in physiological transport and exchange in plants grown in microgravity. J Plant Growth Regul 21:177–190
Soga K, Wakabayashi K, Kamisaka S, Hoson T (2002) Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta 215:1040–1046
Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43
Stryjewski E, Peterson BV, Stutte GW (2000) Long term storage of what plants for light microscopy. SAE technical paper 200-01-2231
Stutte GW, Yorio NC, Wheeler GW (1996) Interacting effects of photoperiod and photosynthetic photon flux on net carbon assimilation and starch accumulation in potato leaves. J Am Soc Hortic Sci 121:264–268
Stutte GW, Monje O, Goins GD, Chapman DK (2000) Measurement of gas exchange characteristics of developing wheat in the biomass production chamber. SAE technical paper 2001-01-424
Stutte GW, Monje O, Goins G, Ruffe L (2001) Evapotranspiration and photosynthesis characteristics of two wheat cultivars grown in the biomass production system. SAE technical paper 2001-01-2180
Stutte GW, Monje O, Anderson S (2003) Wheat growth on board the international space station: germination and early development. Proc Plant Growth Regul Soc Am 30:66–71
Stutte GW, Monje O, Goins GD, Tripathy BC (2005) Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat 2005. Planta 223:46–56
Sytnik KM, Popova AF, Nichitailo GS, Machinsky AL (1992) Peculiarities of the submicroscopic organization of Chlorella cells cultivated on a solid medium in microgravity. Adv Space Res 12:103–106
Tairbekov MG, Parfyonov GP, Platonova RW, Aramova VM, Golov VK, Rostopshina AV, Lyubchenko VYU, Chuchkin VG (1981) Biological Investigations aboard the biosatellite Cosmos-1129. Adv Space Res 1:89–94
Tripathy BC, Brown CS, Levine HG, Krikorian AD (1996) Growth and photosynthetic responses of wheat plants grown in space. Plant Physiol 110:801–806
Ward CH, King JM (1978) Effects of simulated hypogravity on respiration and photosynthesis of higher plants. In: Holmquist R (eds) Life sciences and space research. Pergamon, Oxford, pp 291–296
Ward CH, Wilks SS, Craft HL (1970) Effects of prolonged near weightlessness on growth and gas exchange of photosynthetic plants. Dev Ind Microbiol 11:276–295
Wells HW (1999) Portable device for chemical fixation of a biological sample. NasaTech Briefs, July; KSC-11993
Wheeler RM, Mackowiak CL, Yorio NC, Sager JC (1999) Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations. Ann Bot 83:243–251
Wheeler RM, Stutte GW, Subbarao GV, Yorio NC (2001) Plant growth and human life support for space travel. In: Passarakli M (eds) Handbook of plant and crop physiology, 2nd edn. Marcel Dekker Inc, New York, pp 925–941
Wheeler RM, Sager JC, Prince RP, Knott WM, Mackowiak CL, Yorio NC, Ruffe LM, Peterson BV, Gins GD, Hinkle CR, Berry WL (2003) Crop production for life support systems. NASA TM-20032-11184