Microclimate and thermal perception in courtyards located in a tropical savannah climate
Tóm tắt
Từ khóa
Tài liệu tham khảo
Betti, G., Tartarini, F., Schiavon, S., Nguyen, C. (2021). CBE Clima Tool. Version 0.4.6. Center for the Built Environment, University of California Berkeley. https://clima.cbe.berkeley.edu
Błażejczyk K., Błażejczyk M. (2010). BioKlima© 2.6, Program komputerowy, http://www.igipz.pan.pl/Bioklima-zgik.html
Błażejczyk K, Broede P, Fiala D, Havenith G, Holmér I, Jendritzky G, Kunert A (2010) Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica 14(2010):91–102. https://doi.org/10.2478/mgrsd-2010-0009
Borges VCDAL, Callejas IJA, Durante LC (2020) Thermal sensation in outdoor urban spaces: a study in a tropical savannah climate. Brazil Int J Biometeorol 64(3):533–545. https://doi.org/10.1007/s00484-019-01830-x
Bröde, P. (2021). Issues in UTCI calculation from a decade’s experience. In Applications of the universal thermal climate index UTCI in biometeorology (pp. 13–21). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-76716-7
Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56(3):481–494. https://doi.org/10.1007/s00484-011-0454-1
Callejas IJA, Durante LC, Diz-Mellado E, Galán-Marín C (2020) Thermal sensation in courtyards: Potentialities as a passive strategy in tropical climates. Sustainability 12(15):6135. https://doi.org/10.3390/su12156135
Callejas, I. J. A. , et. al. Impacto da vegetação no microclima de pátios localizados em clima tropical (2022). Arquitextos, São Paulo, Vitruvius, 22, 263.05. https://vitruvius.com.br/revistas/read/arquitextos/22.263/8452
CDS (2020). Thermal comfort indices derived from ERA5 reanalysis, https://doi.org/10.24381/cds.553b7518
Cheng V, Ng E, Chan C et al (2012) Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol 56:43–56. https://doi.org/10.1007/s00484-010-0396-z
Di Napoli C, Barnard C, Prudhomme C, Cloke HL, Pappenberger F (2021) ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geoscience Data Journal 8(1):2–10. https://doi.org/10.1002/gdj3.102
Diz-Mellado E, López-Cabeza VP, Rivera-Gómez C, Galán-Marín C, Rojas-Fernández J, Nikolopoulou M (2021) Extending the adaptive thermal comfort models for courtyards. Build Environ 203:108094. https://doi.org/10.1016/j.buildenv.2021.108094
Elgheznawy, D., & Eltarabily, S. (2021). The impact of sun sail-shading strategy on the thermal comfort in school courtyards. Building and Environment, 108046. https://doi.org/10.1016/j.buildenv.2021.108046
Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441. https://doi.org/10.1007/s00484-011-0424-7
Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972. https://doi.org/10.1152/jappl.1999.87.5.1957
Ghaffarianhoseini A, Berardi U, Ghaffarianhoseini A (2015) Thermal performance characteristics of unshaded courtyards in hot and humid climates. Build Environ 87:154–168. https://doi.org/10.1016/j.buildenv.2015.02.001
Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75. https://doi.org/10.1007/s004840050118
Höppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energy Buildings 34(6):661–665. https://doi.org/10.1016/S0378-7788(02)00017-8
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10551. (1995) Ergonomics of the thermal environments – Assessment of the influence of the thermal environment using subjective judgment scales. Geneva, Switzerland.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7726. (1998) Ergonomics of the thermal environments: Instruments and methods for measuring physical quantities. Geneva, Switzerland.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 9920. (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble. Geneva, Switzerland.
Krüger E, Drach P, Broede P (2017) Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation. Int J Biometeorol 61(3):463–475. https://doi.org/10.1007/s00484-016-1226-8
Lacerda, L.B. (2018). Patrimônio Histórico-cultural de Mato Grosso; Entrelinhas: Cuiabá, Brazil.
Lau, K. K. L., & Choi, C. Y. (2021).The influence of perceived aesthetic and acoustic quality on outdoor thermal comfort in urban environment. Building and Environment, 206. https://doi.org/10.1016/j.buildenv.2021.108333
Martinelli L, Matzarakis A (2017) Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain Cities Soc 29:97–106. https://doi.org/10.1016/j.scs.2016.12.004
Meili N, Acero JA, Peleg N, Manoli G, Burlando P, Fatichi S (2021) Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Build Environ 195:107733. https://doi.org/10.1016/j.buildenv.2021.107733
RD news. Available online: https://www.rdnews.com.br/galeria_embeds_full.php?id=390#ad-image-5 (accessed on 16 Dec 2021).
Rivera-Gómez C, Diz-Mellado E, Galán-Marín C, López-Cabeza V (2019) Tempering potential-based evaluation of the courtyard microclimate as a combined function of aspect ratio and outdoor temperature. Sustain Cities Soc 51:101740. https://doi.org/10.1016/j.scs.2019.101740
Robinson A, Lehmann J, Barriopedro D, Rahmstorf S, Coumou D (2021) Increasing heat and rainfall extremes now far outside the historical climate. npj Clim Atmospheric Sci 4(1):1–4. https://doi.org/10.1038/s41612-021-00202-w
Rodríguez-Algeciras J, Tablada A, Chaos-Yeras M, De la Paz G, Matzarakis A (2018) Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Renew Energy 125:840–856. https://doi.org/10.1016/j.renene.2018.01.082
Soflaei F, Shokouhian M, Abraveshdar H, Alipour A (2017) The impact of courtyard design variants on shading performance in hot-arid climates of Iran. Energy Buildings 143:71–83. https://doi.org/10.1016/j.enbuild.2017.03.027
Tablada A, De Troyer F, Blocken B, Carmeliet J, Verschure H (2009) On natural ventilation and thermal comfort in compact urban environments–the Old Havana case. Build Environ 44(9):1943–1958. https://doi.org/10.1016/j.buildenv.2009.01.008
Tafti FA, Rezaeian M, Razavi SE (2018) Sunken courtyards as educational environments: Occupant’s perception and environmental satisfaction. Tunn Undergr Space Technol 78:124–134. https://doi.org/10.1016/j.tust.2018.04.023
Taleghani M (2018) Outdoor thermal comfort by different heat mitigation strategies – a review. Renew Sustain Energy Rev 81:2011–2018. https://doi.org/10.1016/j.rser.2017.06.010
Vigier T, Moreau G, Siret D (2015) From visual cues to climate perception in virtual urban environments.Virtual Reality (VR), 2015 IEEE: 305–306.
Zamani Z, Heidari S, Hanachi P (2018) Reviewing the thermal and microclimatic function of courtyards. Renew Sustain Energy Rev 93:580–595. https://doi.org/10.1016/j.rser.2018.05.055
Zango MS, Ossen DR, Toe DH, Nimlyat PS, Agboola OP, Luke BJ (2017) The Effect of Vegetation in Enhancing the Performance of Courtyard in Buildings of Tropical Climate. J Appl Sci Environ Sustain 3:34–42