Microbial spatial footprint as a driver of soil carbon stabilization

Nature Communications - Tập 10 Số 1
Alexandra Kravchenko1, Andrey Guber1, Bahar S. Razavi2, John Koestel3, Michelle Quigley1, G. Philip Robertson4, Yakov Kuzyakov5
1Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
2Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrecht-University of Kiel, Kiel, Germany
3Swedish University of Agricultural Sciences, Uppsala, Sweden
4DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
5Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany

Tóm tắt

Abstract

Increasing the potential of soil to store carbon (C) is an acknowledged and emphasized strategy for capturing atmospheric CO2. Well-recognized approaches for soil C accretion include reducing soil disturbance, increasing plant biomass inputs, and enhancing plant diversity. Yet experimental evidence often fails to support anticipated C gains, suggesting that our integrated understanding of soil C accretion remains insufficient. Here we use a unique combination of X-ray micro-tomography and micro-scale enzyme mapping to demonstrate for the first time that plant-stimulated soil pore formation appears to be a major, hitherto unrecognized, determinant of whether new C inputs are stored or lost to the atmosphere. Unlike monocultures, diverse plant communities favor the development of 30–150 µm pores. Such pores are the micro-environments associated with higher enzyme activities, and greater abundance of such pores translates into a greater spatial footprint that microorganisms make on the soil and consequently soil C storage capacity.

Từ khóa


Tài liệu tham khảo

Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 22, 1315–1324 (2016).

West, T. O. & Post, W. M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66, 1930–1946 (2002).

Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric., Ecosyst. Environ. 149, 37–49 (2012).

Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agric., Ecosyst. Environ. 200, 33–41 (2015).

Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707(2015).

McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).

Sprunger, C. D. & Robertson, G. P. Early accumulation of active fraction soil carbon in newly established cellulosic biofuel systems. Geoderma 318, 42–51 (2018).

Post, W. M., Izaurralde, R. C., West, T. O., Liebig, M. A. & King, A. W. Management opportunities for enhancing terrestrial carbon dioxide sinks. Front. Ecol. Environ. 10, 554–561 (2012).

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).

Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).

Erb, K. H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).

Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N. & Robertson, G. P. Agricultural management and soil carbon storage in surface vs. deep layers. Soil Sci. Soc. Am. J. 75, 92–101 (2011).

Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).

Chimento, C., Almagro, M. & Amaducci, S. Carbon sequestration potential in perennial bioenergy crops: the importance of organic matter inputs and its physical protection. GCB Bioenergy 8, 111–121 (2016).

Barre, P. et al. Microbial and plant-derived compounds both contribute to persistent soil organic carbon in temperate soils. Biogeochemistry 140, 81–92 (2018).

Kong, A. Y. Y. & Six, J. Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Am. J. 74, 1201–1210 (2010).

Rasse, D. P., Rumpel, C. & Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796 (2012).

Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).

Kiem, R. & Kögel-Knabner, I. Refractory organic carbon in particle-size fractions of arable soils II: organic carbon in relation to mineral surface area and iron oxides in fractions <6 μm. Org. Geochem. 33, 1699–1713 (2002).

Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

Jastrow, J. D., Amonette, J. E. & Bailey, V. L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Change 80, 5–23 (2007).

Batlle-Bayer, L., Batjes, N. H. & Bindraban, P. S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric., Ecosyst. Environ. 137, 47–58 (2010).

Baer, S. G., Meyer, C. K., Bach, E. M., Klopf, R. P. & Six, J. Contrasting ecosystem recovery on two soil textures: implications for carbon mitigation and grassland conservation. Ecosphere 1, art5 (2010).

Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).

Grandy, A. S. & Robertson, G. P. Aggregation and organic matter protection following tillage of a previously uncultivated soil. Soil Sci. Soc. Am. J. 70, 1398–1406 (2006).

Nunan, N., Wu, K., Young, I. M., Crawford, J. W. & Ritz, K. Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol. Ecol. 44, 203–215 (2003).

Hafner, S. & Kuzyakov, Y. Carbon input and partitioning in subsoil by chicory and alfalfa. Plant Soil 406, 29–42 (2016).

Kravchenko, A. N. & Guber, A. K. Soil pores and their contributions to soil carbon processes. Geoderma 287, 31–39 (2017).

Keiluweit, M., Nico, P. S., Kleber, M. & Fendorf, S. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127, 157–171 (2016).

Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).

Quigley, M. Y., Negassa, W. C., Guber, A. K., Rivers, M. L. & Kravchenko, A. N. Influence of pore characteristics on the fate and distribution of newly added carbon. Front. Environ. Sci. 13, https://doi.org/10.3389/fenvs.2018.00051 (2018).

Chenu, C., Hassink, J. & Bloem, J. Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition. Biol. Fert. Soils 34, 349–356 (2001).

Killham, K., Amato, M. & Ladd, J. N. Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biol. Biochem 25, 57–62 (1993).

Ruamps, L. S. et al. Regulation of soil organic C mineralisation at the pore scale. Fems Microbiol Ecol. 86, 26–35 (2013).

Strong, D. T., De Wever, H., Merckx, R. & Recous, S. Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil. Sci. 55, 739–750, https://doi.org/10.1111/j.1365-2389.2004.00639.x (2004).

Kravchenko, A. N. et al. Intra-aggregate pore structure influences phylogenetic composition of bacterial community in macroaggregates. Soil Sci. Soc. Am. J. 78, 1924–1939, https://doi.org/10.2136/sssaj2014.07.0308 (2014).

Bailey, V. L., Smith, A. P., Tfaily, M., Fansler, S. J. & Bond-Lamberty, B. Differences in soluble organic carbon chemistry in pore waters sampled from different pore size domains. Soil Biol. Biochem. 107, 133–143 (2017).

Smith, A. P. et al. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nat. Commun. 8, 1335 (2017).

Akbari, A. & Ghoshal, S. Bioaccessible porosity in soil aggregates and implications for biodegradation of high molecular weight petroleum compounds. Environ. Sci. Technol. 49, 14368–14375 (2015).

Schluter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).

Sanford, G. R. et al. Comparative productivity of alternative cellulosic bioenergy cropping systems in the North Central USA. Agriculture Ecosyst.Environ. 216, 344–355 (2016).

Cotrufo, M. F. et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 8, 776-+ (2015).

Kravchenko, A. N. & Robertson, G. P. Whole-profile soil carbon stocks: the danger of assuming too much from analyses of too little. Soil Sci. Soc. Am. J. 75, 235–240 (2011).

Quigley, M. Y., Rivers, M. L. & Kravchenko, A. N. Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Front. Environ. Sci. 29, https://doi.org/10.3389/fenvs.2018.00028 (2018).

Kravchenko, A. N. et al. X-ray computed tomography to predict soil N2O production via bacterial denitrification and N2O emission from soils in contrasting bioenergy cropping systems. Gcb Bioenergy, 1–17, https://doi.org/10.1111/gcbb.12552 (2018).

Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).

Quigley, M. Y., Kravchenko, A. N., Negassa, W., Guber, A. K. & Rivers, M. L. Influence of pore characteristics on the fate and distribution of newly added carbon. Front. Environ. Sci. 6, https://doi.org/10.3389/fenvs.2018.00051 (2018).

Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).

Jörg, B. et al. Physical carbon‐sequestration mechanisms under special consideration of soil wettability. J. Plant Nutr. Soil Sci. 171, 14–26 (2008).

McLaughlin, S. B. & Kszos, L. A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass-. Bioenerg. 28, 515–535 (2005).

Zhang, B. et al. Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol. Biochem. 112, 140–152 (2017).

Jesus, E. C. et al. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. Glob. Change Biol. Bioenergy 8, 481–494 (2016).

Sprunger, C. D., Oates, L. G., Jackson, R. D. & Robertson, G. P. Plant community composition influences fine root production and biomass allocation in perennial bioenergy cropping systems of the upper Midwest, USA. Biomass-. Bioenergy 105, 248–258 (2017).

Harris, Z. M., Spake, R. & Taylor, G. Land use change to bioenergy: a meta-analysis of soil carbon and GHG emissions. Biomass-. Bioenergy 82, 27–39 (2015).

Qin, Z., Dunn, J. B., Kwon, H., Mueller, S. & Wander, M. M. Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. Glob. Change Biol. Bioenergy 8, 66–80 (2016).

Liebig, M. A., Schmer, M. R., Vogel, K. P. & Mitchell, R. B. Soil carbon storage by switchgrass grown for bioenergy. Bioenerg. Res 1, 215–222 (2008).

Schmer, M. R., Liebig, M. A., Vogel, K. P. & Mitchell, R. B. Field-scale soil property changes under switchgrass managed for bioenergy. Glob. Change Biol. Bioenergy 3, 439–448 (2011).

Garten, C. T. & Wullschleger, S. D. Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis. J. Environ. Qual. 29, 645–653 (2000).

Adkins, J., Jastrow, J. D., Morris, G. P., Six, J. & de Graaff, M.-A. Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation. Geoderma 262, 147–154 (2016).

Chaudhary, D. R. & Dick, R. P. Identification of metabolically active rhizosphere microorganisms by stable isotopic probing of PLFA in switchgrass. Commun. Soil Sci. Plan 47, 2433–2444 (2016).

Ferchaud, F., Vitte, G. & Mary, B. Changes in soil carbon stocks under perennial and annual bioenergy crops. Gcb Bioenergy 8, 290–306 (2016).

Kantola, I. B., Masters, M. D. & DeLucia, E. H. Soil particulate organic matter increases under perennial bioenergy crop agriculture. Soil Biol. Biochem 113, 184–191 (2017).

Stewart, C. E. et al. Seasonal switchgrass ecotype contributions to soil organic carbon, deep soil microbial community composition and rhizodeposit uptake during an extreme drought. Soil Biol. Biochem. 112, 191–203 (2017).

Bodner, G., Leitner, D. & Kaul, H. P. Coarse and fine root plants affect pore size distributions differently. Plant Soil 380, 133–151 (2014).

Hinsinger, P., Bengough, A. G., Vetterlein, D. & Young, I. M. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117–152 (2009).

Kell, D. B. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 108, 407–418 (2011).

Banfield, C. C., Dippold, M. A., Pausch, J., Hoang, D. T. T. & Kuzyakov, Y. Biopore history determines the microbial community composition in subsoil hotspots. Biol. Fert. Soils 53, 573–588 (2017).

Banfield, C. C., Zarebanadkouki, M., Kopka, B. & Kuzyakov, Y. Labelling plants in the Chernobyl way: a new Cs-137 and C-14 foliar application approach to investigate rhizodeposition and biopore reuse. Plant Soil 417, 301–315 (2017).

Robertson, G. P. & Hamilton, S. K. in The Ecology of Agricultural Landscapes: Long-term Research on the Path to Sustainability (eds Hamilton, S. K., Doll, J. E. & Robertson, G. P.) 1–32 (Oxford University Press, Oxford, 2015).

Grossman, R. B. & Reinsch, T. G. in Methods of Soil Analysis. Part 4. Physical Methods. (eds Dane, J. H. & Topp, G. C.) 201–228 (Agron. Monogr. 5. ASA and SSSA, 2002).

Kittler, J. & Illingworth, J. Minimum error thresholding. Pattern Recogn. 19, 41–47 (1986).

Nakagawa, Y. & Rosenfeld, A. Some experiments on variable thresholding. Pattern Recogn. 11, 191–204 (1979).

Munch, B. & Holzer, L. Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91, 4059–4067 (2008).

Ladoni, M., Basir, A. & Kravchenko, A. Which soil carbon fraction is the best for assessing management differences? A statistical power perspective. Soil Sci. Soc. Am. J. 79, 848–857 (2015).

Paul, E. A., Harris, D., Klug, M. J. & Ruess, R. W. in Standard Soil Methods for Long-term Ecological Research (eds Robertson, G. P., Coleman, D. C., Bledsoe, C. S. & Sollins, P.) Ch. 15, 291–317 (Oxford University Press, Oxford, 1999).

Horwath, W. R. et al. Defining a realistic control for the chloroform fumigation-incubation method using microscopic counting and C-14-substrates. Can. J. Soil Sci. 76, 459–467 (1996).

Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Temperature selects for static soil enzyme systems to maintain high catalytic efficiency. Soil Biol. Biochem. 97, 15–22 (2016).

Kravchenko, A. N. et al. Spatial patterns of extracellular enzymes: combining X-ray computed micro-tomography and 2D zymography. Soil Biol. Biochem. 135, 411–419 (2019).

Razavi, B. S., Liu, S. B. & Kuzyakov, Y. Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biol. Biochem. 105, 236–243 (2017).

Guber, A. et al. Quantitative soil zymography: mechanisms, processes of substrate and enzyme diffusion in porous media. Soil Biol. Biochem 127, 156–167 (2018).

Milliken, G. A. & Johnson, D. E. Analysis of Messy Data Volume I: Designed Experiments. 2nd edn (CRC Press, Boca Raton, FL, 2009).

Milliken, G. A. & Johnson, D. E. Analysis of Messy Data Volume III: Analysis of Covariance. 1st edn (CRC Press, Boca Raton, FL, 2001).