Microbial pathways for nitrogen loss in an upland soil

Wiley - Tập 20 Số 5 - Trang 1723-1738 - 2018
Guibing Zhu1,2,3, Shanyun Wang2, Yixiao Li2, Linjie Zhuang2, Siyan Zhao2,3, Cheng Wang2,3, Marcel M. M. Kuypers1, Mike S. M. Jetten4, Yong‐Guan Zhu2
1Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
2Research Center for Eco‐Environmental Sciences, Chinese Academy of Sciences Beijing 100085 People's Republic of China
3University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
4Department of Microbiology, Radboud University, Nijmegen, The Netherlands

Tóm tắt

SummaryThe distribution and importance of anaerobic ammonium oxidation (anammox) and nitrite‐dependent anaerobic methane oxidation (n‐damo) have been identified in aquatic ecosystems; their role in agricultural upland soils however has not yet been well investigated. In this study, we examined spatio‐temporal distributions of anammox and n‐damo bacteria in soil profiles (300 cm depth) from an agricultural upland. Monitoring nitrogen (N) conversion activity using isotope‐tracing techniques over the course of one year showed denitrification (99.0% N‐loss in the winter and 85.0% N‐loss in the summer) predominated over anammox (1.0% N‐loss in the winter and 14.4% N‐loss in the summer) and n‐damo (0.6% N‐loss in the winter) in surface soils (0–20 cm). While below 20 cm depth, N‐loss was dominated by anammox (79.4 ± 14.3% in the winter and 65.4 ± 12.5% in the summer) and n‐damo was not detected. Phylogenetic analysis showed that Candidatus Brocadia anammoxidans dominated the anammox community in the surface soil and Candidatus Brocadia fulgida dominated below 20 cm depth. Dissimilatory nitrate reduction to ammonium (DNRA), another nitrite reduction process, was found to play a limited role (4.9 ± 3.5%) in the surface soil compared with denitrification; below 80 cm DNRA rates were much higher than rates of anammox and denitrification. Ammonium oxidation was the main source of above 80 cm (70.9 ± 23.3%), the key influencing factor on anammox rates, and nitrate reduction (100%) was the main source below 80 cm. Considering the anammox, n‐damo and denitrification rates as a whole in the sampled soil profile, denitrification is still the main N‐loss process in upland soils.

Từ khóa


Tài liệu tham khảo

10.1111/j.1574-6941.2006.00225.x

10.1111/1462-2920.12674

10.1038/nature04159

Bao S.D., 2000, Chemical Analysis for Agricultural Soil

10.1016/0038-0717(81)90063-8

10.1038/s41598-017-02278-y

10.1016/j.resmic.2005.01.011

10.1128/AEM.00340-11

10.1073/pnas.1411617111

10.1146/annurev-marine-010213-135040

10.1016/j.soilbio.2014.02.011

10.1007/s00253-015-6986-2

10.1016/j.gca.2004.09.032

10.1128/AEM.00067-09

10.1038/nature08883

Food and Agricultural Organization of the United Nations (FAO)(2013) Statistics division of the food and agricultural organization of the United Nations (FAOSTAT). Available at:www.fao.org/publications/sofa

10.1073/pnas.0506625102

10.1038/ismej.2011.178

10.1042/BST20110707

10.1128/AEM.71.2.1066-1071.2005

Hallin S., 1999, PCR detection of genes encoding nitrite reductase in denitrifying bacteria PCR detection of genes encoding nitrite reductase in denitrifying bacteria, Appl Environ Microbiol, 65, 1652, 10.1128/AEM.65.4.1652-1657.1999

10.1038/nature12375

10.1111/j.1462-2920.2007.01358.x

10.1073/pnas.1318393111

Hu S., 2015, A laboratory investigation of interactions between denitrifying anaerobic methane oxidation (damo) and anammox processes in anoxic environments, Sci Rep, 5, 1

10.3389/fmicb.2012.00366

10.1016/j.watres.2003.08.024

10.1128/AEM.64.8.3042-3051.1998

10.1111/j.1574-6941.2007.00408.x

10.1038/nature10453

10.1111/j.1462-2920.2006.01183.x

10.1016/j.syapm.2006.03.004

10.1126/science.1254070

10.1038/nature01472

10.1073/pnas.0502088102

10.1016/j.syapm.2012.03.005

10.1073/pnas.0812444106

10.2136/sssaj2002.1540

Lewicka‐Szczebak D., 2016, Isotopic fractionation of N2O to quantify N2O reduction to N2 – validation with helium incubation and 15N gas flux methods, Biogeosciences, 1

10.1016/j.soilbio.2014.04.023

10.1128/AEM.02520-12

10.1128/AEM.53.7.1536-1540.1987

10.1128/AEM.05539-11

10.1002/rcm.4307

10.1016/j.femsec.2004.04.012

10.1128/AEM.66.4.1564-1571.2000

10.2166/wst.2005.0215

10.1021/es9001967

10.1038/nature04617

10.1128/AEM.01254-06

10.3389/fmicb.2012.00112

10.3354/ame036293

10.1016/j.gca.2014.02.042

10.1038/srep17361

10.1002/jpln.201000200

10.1016/j.soilbio.2011.06.014

10.3389/fmicb.2014.00460

10.1016/S0065-2113(03)81004-0

10.1021/acs.est.6b01765

10.1128/AEM.02379-14

10.1007/s00253-014-6031-x

10.1016/j.soilbio.2015.01.010

10.3389/fmicb.2012.00296

10.1111/j.1462-2920.2006.01074.x

10.1038/22749

Tiedje J.M., 1988, Environmental Microbiology of Anaerobes, 179

10.1128/AEM.68.3.1312-1318.2002

10.1016/j.femsec.2004.04.011

10.1038/461049a

10.1021/es0490525

Wang J., 2010, Geographic atlas of China, SinoMaps Press, 34

Wang S., 2011, Quantitative analyses of ammonia‐oxidizing archaea and bacteria in the sediments of four nitrogen‐rich wetlands in China, Appl Environ Microbiol, 90, 779

10.1016/j.watres.2015.07.005

10.1111/j.1574-6968.2012.02654.x

10.1128/AEM.03443-13

10.1023/A:1009717603427

10.1128/AEM.00888-16

10.1128/AEM.02664-14

10.1146/annurev.energy.30.050504.144248

10.1111/1574-6968.12567

Zhu B., 2016, Unexpected diversity and high abundance of putative nitric oxide dismutase (nod) genes in contaminated aquifers and wastewater treatment systems, Appl Environ Microbiol, 83, AEM.02750

10.1038/ismej.2011.63

10.1038/srep17306