Microbial Fuel Cells, A Current Review

Energies - Tập 3 Số 5 - Trang 899-919
Ashley E. Franks1, Kelly P. Nevin1
1Department of Microbiology, University of Massachusetts, Amherst, MA 01002, USA

Tóm tắt

Microbial fuel cells (MFCs) are devices that can use bacterial metabolism to produce an electrical current from a wide range organic substrates. Due to the promise of sustainable energy production from organic wastes, research has intensified in this field in the last few years. While holding great promise only a few marine sediment MFCs have been used practically, providing current for low power devices. To further improve MFC technology an understanding of the limitations and microbiology of these systems is required. Some researchers are uncovering that the greatest value of MFC technology may not be the production of electricity but the ability of electrode associated microbes to degrade wastes and toxic chemicals. We conclude that for further development of MFC applications, a greater focus on understanding the microbial processes in MFC systems is required.

Từ khóa


Tài liệu tham khảo

Bond, 2002, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483, 10.1126/science.1066771

Kim, 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewenella putrefaciens, Enzyme Microb. Technol., 30, 145, 10.1016/S0141-0229(01)00478-1

Kim, 1999, A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotech., 9, 365

Time The 50 Best Inventions of 2009. Available online: http://www.time.com/time/specials/packages/article/0,28804,1934027_1934003_1933965,00.html.

Potter, 1911, Electrical effects accompanying the decomposition of organic compunds, Proc. R. Soc. Lond. B, 84, 260, 10.1098/rspb.1911.0073

Potter, 1910, On the difference of potential due to the vital activity of microorganisms, Proc. Univ. Durham Phil. Soc., 3, 245

Tender, 2008, The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy, J. Power Sourc., 179, 571, 10.1016/j.jpowsour.2007.12.123

Tender, 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821, 10.1038/nbt716

Reimers, 2001, Harvesting energy from the marine sediment-water interface, Environ. Sci. Technol., 35, 192, 10.1021/es001223s

Rezaei, 2008, Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell, Biotechnol. Bioeng., 101, 1163, 10.1002/bit.22015

Rezaei, 2009, Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells, J. Power Sourc., 192, 304, 10.1016/j.jpowsour.2009.03.023

Rezaei, 2007, Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems, Environ. Sci. Technol., 41, 4053, 10.1021/es070426e

Rezaei, 2009, Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell, Appl. Environ. Microbiol., 75, 3673, 10.1128/AEM.02600-08

Donovan, 2008, Batteryless, wireless sensor powered by a sediment microbial fuel cell, Environ. Sci. Technol., 42, 8591, 10.1021/es801763g

Dewan, 2009, Evaluating the performance of microbial fuel cells powering electronic devices, J. Power Sourc., 195, 90, 10.1016/j.jpowsour.2009.07.001

Behera, 2009, Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode, Bioresour. Technol, 101, 1183, 10.1016/j.biortech.2009.07.089

Lovley, 2006, Microbial energizers: Fuel cells that keep on going, Microbe, 1, 323

Wall, J., Harwood, C., and Demain, A. (2008). Bioenergy: Microbial Contributions to Alternative Fuels, ASM Press.

Logan, 2009, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375, 10.1038/nrmicro2113

Pant, 2009, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresourc. Technol., 101, 1533, 10.1016/j.biortech.2009.10.017

Bond, 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548, 10.1128/AEM.69.3.1548-1555.2003

Nevin, 2008, Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells, Environ. Microbiol., 10, 2505, 10.1111/j.1462-2920.2008.01675.x

Kim, 2000, Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris, Biotechnol. Bioeng., 70, 109, 10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M

Lu, 2009, Electricity generation from starch processing wastewater using microbial fuel cell technology, Biochem. Eng. J., 43, 246, 10.1016/j.bej.2008.10.005

Ren, 2008, Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells, Water Sci. Technol., 58, 617, 10.2166/wst.2008.431

Zhang, 2009, Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells, Appl. Environ. Microbiol., 75, 3389, 10.1128/AEM.02240-08

Zhang, 2009, Pyridine degradation in the microbial fuel cells, J. Hazard. Mat., 172, 465, 10.1016/j.jhazmat.2009.07.027

Luo, 2009, Phenol degradation in microbial fuel cells, Chem. Eng. J., 147, 259, 10.1016/j.cej.2008.07.011

Zhu, 2009, Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell, Electrochem. Comm., 11, 274, 10.1016/j.elecom.2008.11.023

Liu, 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Env. Sci. Tech., 38, 4040, 10.1021/es0499344

You, 2006, Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell, Huan Jing Ke Xue, 27, 1786

Feng, 2008, Brewery wastewater treatment using air-cathode microbial fuel cells, App. Microbiol. Biotechnol., 78, 873, 10.1007/s00253-008-1360-2

Greenman, 2009, Landfill leachate treatment with microbial fuel cells; scale-up through plurality, Bioresour. Technol., 100, 5085, 10.1016/j.biortech.2009.05.061

Patil, 2009, Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresour. Technol., 100, 5132, 10.1016/j.biortech.2009.05.041

Freguia, 2009, Microbial fuel cells operating on mixed fatty acids, Bioresour. Technol., 101, 1233, 10.1016/j.biortech.2009.09.054

Morris, 2008, Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater, J. Environm. Sci. Health A: Tox./Hazard. Subst. Environm. Eng., 43, 18, 10.1080/10934520701750389

Lin, 2005, Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill, Appl. Environ. Microbiol., 71, 5983, 10.1128/AEM.71.10.5983-5991.2005

Anderson, 1999, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65, 3056, 10.1128/AEM.65.7.3056-3063.1999

Roling, 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer, Appl. Environ. Microbiol., 67, 4619, 10.1128/AEM.67.10.4619-4629.2001

Lovley, 1989, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature, 339, 297, 10.1038/339297a0

Anderson, 1998, Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers, Environ. Sci. Technol., 32, 1222, 10.1021/es9704949

Lovley, 1996, Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms, Appl. Environ. Microbiol., 62, 288, 10.1128/aem.62.1.288-291.1996

Lovley, 1994, Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, Nature, 370, 128, 10.1038/370128a0

Lovley, 1996, Humic substances as electron acceptors for microbial respiration, Nature, 382, 445, 10.1038/382445a0

Lovley, 1995, Deep subsurface microbial processes, Rev. Geophsy., 33, 365, 10.1029/95RG01305

Lovley, 1997, Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers, J. Industr. Microbiol., 18, 75

Reddy, 2002, The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments, Environ. Sci. Technol., 36, 4754, 10.1021/es020656n

Rogers, 2002, Natural Attenuation of Polycyclic Aromatic Hydrocarbon-Contaminated Sites: Review, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 6, 141, 10.1061/(ASCE)1090-025X(2002)6:3(141)

Frysinger, 2003, Resolving the unresolved complex mixture in petroleum-contaminated sediments, Environ. Sci. Technol., 37, 1653, 10.1021/es020742n

Zhang, T., Gannon, S.M., Nevin, K.P., Franks, A.E., and Lovley, D.R. (2010). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminatedsediments by providing an electrode as the electron acceptor. Environm. Microbiol. Rep.

Borole, 2009, Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells, Biotechnol. Biofuels, 2, 7, 10.1186/1754-6834-2-7

Kerzenmacher, 2008, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, J. Power Sourc., 182, 1, 10.1016/j.jpowsour.2008.03.031

Kim, 2003, A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V, J. Electrochem. Soc., 150, A209, 10.1149/1.1534095

Minteer, 2007, Enzyme-based biofuel cells, Curr. Opin. Biotechnol., 18, 228, 10.1016/j.copbio.2007.03.007

Gallaway, 2004, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev., 104, 4867, 10.1021/cr020719k

Mingui, 2006, Passing data and supplying power to neural implants, IEEE Eng. Med. Biol. Mag., 25, 39, 10.1109/MEMB.2006.1705746

Justin, G.A., Zhang, Y., Sun, M., and Sclabassi, R. (, January April). An investigation of the ability of white blood cells to generate electricity in biofuel cells. Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, Hoboken, NJ, USA.

Lovley, 2006, Bug juice: harvesting electricity with microorganisms, Nature Rev. Microbiol., 4, 497, 10.1038/nrmicro1442

Rabaey, 2004, Biofuel cells select for microbial consortia that self-mediate elecron transfer, Appl. Environ. Microbiol., 70, 5373, 10.1128/AEM.70.9.5373-5382.2004

Phung, 2004, Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences, FEMS Microb. Lett., 233, 77, 10.1016/j.femsle.2004.01.041

Aelterman, 2006, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388, 10.1021/es0525511

Kim, 2004, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, App. Microbiol. and Biotechnol., 63, 672, 10.1007/s00253-003-1412-6

Pham, 2008, Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer, Appl. Microbiol. Biotechnol., 77, 1119, 10.1007/s00253-007-1248-6

Park, 2001, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297, 10.1006/anae.2001.0399

Bond, 2005, Evidence for Involvement of an Electron Shuttle in Electricity Generation by Geothrix fermentans, Appl. Environ. Microbiol., 71, 2186, 10.1128/AEM.71.4.2186-2189.2005

Zhang, 2008, The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell, Electrochem. Comm., 10, 293, 10.1016/j.elecom.2007.12.009

Zuo, 2007, Tubular membrane cathodes for scalable power generation in microbial fuel cells, Env. Sci. Tech., 41, 3347, 10.1021/es0627601

Zhao, 2008, Activated carbon cloth as anode for sulfate removal in a microbial fuel cell, Environ. Sci Technol., 42, 4971, 10.1021/es8003766

Borole, 2008, A microbial fuel cell operating at low pH using the acidophile acidiphilium cryptum, Biotechnol. Lett., 30, 1367, 10.1007/s10529-008-9700-y

Zhang, 2006, Sequencing genomes from single cells by polymerase cloning, Nat. Biotechnol., 24, 680, 10.1038/nbt1214

Holmes, 2004, Potential role of a novel psychrotolerant Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by the marine sediment fuel cell, Appl. Environ. Microbiol., 70, 6023, 10.1128/AEM.70.10.6023-6030.2004

Chaudhuri, 2003, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol., 21, 1229, 10.1038/nbt867

Walker, 2006, Biological fuel cell and an application as a reserve power source, J. Power Sourc., 160, 123, 10.1016/j.jpowsour.2006.01.077

Prasad, 2007, Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell, Biosen. Bioelectron., 22, 2604, 10.1016/j.bios.2006.10.028

Freguia, 2008, Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes, Environ. Sci. Technol., 42, 7937, 10.1021/es800482e

Torres, 2007, Kinetics of consumption of fermentation products by anode-respiring bacteria, App. Microbiol. Biotechnol., 77, 689, 10.1007/s00253-007-1198-z

Lee, 2008, Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates, Water Res., 42, 1501, 10.1016/j.watres.2007.10.036

Lanthier, 2008, Growth with high planktonic biomass in Shewanella oneidensis fuel cells, FEMS Microbiol. Lett., 278, 29, 10.1111/j.1574-6968.2007.00964.x

Rabaey, 2003, A microbial fuel cell cabable lf converting glucose to electricity at high rate and efficiency, Biotech. Lett., 25, 1531, 10.1023/A:1025484009367

Rittmann, B.E., Torres, C.I., and Marcus, A.K. (2008). Emerging Environmental Technologies, Springer.

Cheng, 2006, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Env. Sci. Tech., 40, 364, 10.1021/es0512071

Zhao, 2005, Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Comm., 7, 1405, 10.1016/j.elecom.2005.09.032

Nevin, K.P., Kim, B.C., Glaven, R.H., Johnson, J.P., Woodard, T.L., Methe, B.A., DiDonato, R.J., Covalla, S.F., Franks, A.E., Liu, A., and Lovley, D.R. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE, 4.

Rabaey, 2008, Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells, ISME J., 2, 519, 10.1038/ismej.2008.1

Rabaey, 2005, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401, 10.1021/es048563o

Sund, 2007, Effect of electron mediators on current generation and fermentation in a microbial fuel cell, Appl. Microbiol. Biotechnol., 76, 561, 10.1007/s00253-007-1038-1

Logan, 2006, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016

Richter, 2009, Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer, Energ. Environ. Sci., 2, 506, 10.1039/b816647a

Fricke, 2008, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energ. Environ. Sci., 1, 144, 10.1039/b802363h

Busalmen, 2008, Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport, Environ. Sci. Technol., 42, 2445, 10.1021/es702569y

Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., and Peng, Z. (2006). A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. Camb., 2257–2259.

Srikanth, 2008, Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes, Biotechnol. Bioeng., 99, 1065, 10.1002/bit.21671

Dumas, 2008, Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell, Bioresour. Technol., 99, 8887, 10.1016/j.biortech.2008.04.054

Cheng, 2009, A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat, Bioelectrochemistry, 74, 227, 10.1016/j.bioelechem.2008.10.002

Marsili, 2008, Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci. USA, 105, 3968, 10.1073/pnas.0710525105

Nevin, 2002, Novel mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Envioron. Microbiol., 68, 2294, 10.1128/AEM.68.5.2294-2299.2002

Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol., 70, 921, 10.1128/AEM.70.2.921-928.2004

Reguera, 2005, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098, 10.1038/nature03661

Myers, 1992, Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1, J. Bacteriol., 174, 3429, 10.1128/jb.174.11.3429-3438.1992

Lovley, 2006, Microbial fuel cells: Covel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327, 10.1016/j.copbio.2006.04.006

Lovley, 2008, The microbe electric: Conversion of organic matter to electricity, Curr. Opin. Biotechnol., 19, 564, 10.1016/j.copbio.2008.10.005

Lovley, 2008, Extracellular electron transfer: Wires, capacitors, iron lungs, and more, Geobiology, 6, 225, 10.1111/j.1472-4669.2008.00148.x

Holmes, 2004, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments, Microbial Ecol., 48, 178, 10.1007/s00248-003-0004-4

Ishii, 2008, Comparison of electrode reduction activities of geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell, Appl. Environ. Microbiol., 74, 7348, 10.1128/AEM.01639-08

Nelson, 2003, The genome of Geobacter sulfurreducens: Insights into metal reduction in subsurface environments, Science, 302, 1967, 10.1126/science.1088727

Coppi, 2001, Development of a genetic system for Geobacter sulfurreducens, Appl. Environ. Microbiol., 67, 3180, 10.1128/AEM.67.7.3180-3187.2001

Postier, B.L., DiDonato, R.J., Nevin, K.P., Liu, A., Frank, B., Lovley, D.R., and Methe, B.A. (2008). Benefits of electrochemically synthesized oligonucleotide microarrays for analysis of gene expression in understudied microorganisms. J. Microbiol. Methods, (in press).

Park, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501

Logan, 2006, Electricity-producing bacterial communities in microbial fuel cells, Trend Microbiol., 14, 512, 10.1016/j.tim.2006.10.003

Debabov, 2008, Electricity from microorganisms, Mikrobiologiia, 77, 149

Chang, 2006, Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J. Microbiol. Biotechnol., 16, 163

Kim, 2005, OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens, J. Bacteriol., 187, 4505, 10.1128/JB.187.13.4505-4513.2005

Holmes, 2006, Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens, Env. Microbiol., 8, 1805, 10.1111/j.1462-2920.2006.01065.x

Holmes, 2008, Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes, Microbiol., 154, 1422, 10.1099/mic.0.2007/014365-0

Busalmen, 2008, C-type cytochromes wire electricity-producing bacteria to electrodes, Angew. Chem. Int. Ed. Engl., 47, 4874, 10.1002/anie.200801310

Franks, 2009, Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm, Energ. Environ. Sci., 2, 113, 10.1039/B816445B

Reguera, 2006, Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens Fuel Cells, Appl. Environ. Microbiol., 72, 7345, 10.1128/AEM.01444-06

Torres, 2007, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98, 1171, 10.1002/bit.21533

Picioreanu, 2007, A computational model for biofilm-based microbial fuel cells, Water Res., 41, 2921, 10.1016/j.watres.2007.04.009

Mas, 2006, On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network, Sensor Actuat. B: Chem., 118, 129, 10.1016/j.snb.2006.04.070

Dheilly, 2008, Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry, Appl. Microbiol. Biotechnol., 79, 157, 10.1007/s00253-008-1404-7

Tribollet, 1999, In situ detection and characterization of biofilm in waters by electrochemical methods, Electrochimica Acta, 45, 1067, 10.1016/S0013-4686(99)00310-2

Izallalen, 2008, Geobacter sulfurreducens strain engineered for increased rates of respiration, Met. Eng., 10, 267, 10.1016/j.ymben.2008.06.005

Mahadevan, 2006, Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling, Appl. Environ. Microbiol., 72, 1558, 10.1128/AEM.72.2.1558-1568.2006

Yi, 2009, Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells, Biosens. Bioelectron., 24, 3498, 10.1016/j.bios.2009.05.004

Torres, 2008, Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells, Environ. Sci. Technol., 42, 8773, 10.1021/es8019353

Torres, 2008, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872, 10.1002/bit.21821

Lee, 2009, Effects of Substrate Diffusion and Anode Potential on Kinetic Parameters for Anode-Respiring Bacteria, Environ. Scienc. Technol., 43, 7571, 10.1021/es9015519

Franks, A.E., Nevin, K.P., Glaven, R.H., and Lovley, D.R. (2010). Microtoming Coupled to Microarray Analysis to Evaluate the Spatial Metabolic Status of Geobacter sulfurreducens Biofilms. ISME J.

Logan, 2006, Microbial fuel cells-challenges and applications, Environ. Sci. Technol., 40, 5172, 10.1021/es0627592

Clauwaert, 2007, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Scienc. Technol., 41, 7564, 10.1021/es0709831

Carver, 2008, Cathodic limitations in microbial fuel cells: An overview, J. Power Sourc., 180, 683, 10.1016/j.jpowsour.2008.02.074

Gil, 2003, Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327, 10.1016/S0956-5663(02)00110-0

Rabaey, 2005, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077, 10.1021/es050986i

Gregory, 2004, Graphite electrodes as electron donors for anaerobic respiration, Env. Microbiol., 6, 596, 10.1111/j.1462-2920.2004.00593.x

Gregory, 2005, Remediation and recovery of uranium from contaminated subsurface environments with electrodes, Env. Sci. Tech., 39, 8943, 10.1021/es050457e

Rhoads, 2005, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666, 10.1021/es048386r

Tran, 2009, Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell, Water Sci. Technol., 59, 1803, 10.2166/wst.2009.209

Bergel, 2005, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm, Electrochem. Comm., 7, 900, 10.1016/j.elecom.2005.06.006

You, 2009, Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material, Fuel Cells, 9, 588, 10.1002/fuce.200900023

Chen, 2008, Application of biocathode in microbial fuel cells: Cell performance and microbial community, App. Microbiol. Biotechnol., 79, 379, 10.1007/s00253-008-1451-0

Strycharz, 2010, Reductive dechlorination of 2-chlorophenol by anaeromyxobacter dehalogenans with an electrode serving as the electron donor, Environ. Microbio. Environ. Microbiol. Report, 2, 289, 10.1111/j.1758-2229.2009.00118.x

Strycharz, 2008, Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter Lovleyi, Appl. Environ. Microbiol., 74, 5943, 10.1128/AEM.00961-08