Microbial Fuel Cells, A Current Review
Tóm tắt
Microbial fuel cells (MFCs) are devices that can use bacterial metabolism to produce an electrical current from a wide range organic substrates. Due to the promise of sustainable energy production from organic wastes, research has intensified in this field in the last few years. While holding great promise only a few marine sediment MFCs have been used practically, providing current for low power devices. To further improve MFC technology an understanding of the limitations and microbiology of these systems is required. Some researchers are uncovering that the greatest value of MFC technology may not be the production of electricity but the ability of electrode associated microbes to degrade wastes and toxic chemicals. We conclude that for further development of MFC applications, a greater focus on understanding the microbial processes in MFC systems is required.
Từ khóa
Tài liệu tham khảo
Bond, 2002, Electrode-reducing microorganisms that harvest energy from marine sediments, Science, 295, 483, 10.1126/science.1066771
Kim, 2002, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewenella putrefaciens, Enzyme Microb. Technol., 30, 145, 10.1016/S0141-0229(01)00478-1
Kim, 1999, A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens, J. Microbiol. Biotech., 9, 365
Time The 50 Best Inventions of 2009. Available online: http://www.time.com/time/specials/packages/article/0,28804,1934027_1934003_1933965,00.html.
Potter, 1911, Electrical effects accompanying the decomposition of organic compunds, Proc. R. Soc. Lond. B, 84, 260, 10.1098/rspb.1911.0073
Potter, 1910, On the difference of potential due to the vital activity of microorganisms, Proc. Univ. Durham Phil. Soc., 3, 245
Tender, 2008, The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy, J. Power Sourc., 179, 571, 10.1016/j.jpowsour.2007.12.123
Tender, 2002, Harnessing microbially generated power on the seafloor, Nat. Biotechnol., 20, 821, 10.1038/nbt716
Reimers, 2001, Harvesting energy from the marine sediment-water interface, Environ. Sci. Technol., 35, 192, 10.1021/es001223s
Rezaei, 2008, Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell, Biotechnol. Bioeng., 101, 1163, 10.1002/bit.22015
Rezaei, 2009, Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid-substrate microbial fuel cells, J. Power Sourc., 192, 304, 10.1016/j.jpowsour.2009.03.023
Rezaei, 2007, Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems, Environ. Sci. Technol., 41, 4053, 10.1021/es070426e
Rezaei, 2009, Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell, Appl. Environ. Microbiol., 75, 3673, 10.1128/AEM.02600-08
Donovan, 2008, Batteryless, wireless sensor powered by a sediment microbial fuel cell, Environ. Sci. Technol., 42, 8591, 10.1021/es801763g
Dewan, 2009, Evaluating the performance of microbial fuel cells powering electronic devices, J. Power Sourc., 195, 90, 10.1016/j.jpowsour.2009.07.001
Behera, 2009, Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode, Bioresour. Technol, 101, 1183, 10.1016/j.biortech.2009.07.089
Lovley, 2006, Microbial energizers: Fuel cells that keep on going, Microbe, 1, 323
Wall, J., Harwood, C., and Demain, A. (2008). Bioenergy: Microbial Contributions to Alternative Fuels, ASM Press.
Logan, 2009, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375, 10.1038/nrmicro2113
Pant, 2009, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresourc. Technol., 101, 1533, 10.1016/j.biortech.2009.10.017
Bond, 2003, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol., 69, 1548, 10.1128/AEM.69.3.1548-1555.2003
Nevin, 2008, Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells, Environ. Microbiol., 10, 2505, 10.1111/j.1462-2920.2008.01675.x
Kim, 2000, Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris, Biotechnol. Bioeng., 70, 109, 10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
Lu, 2009, Electricity generation from starch processing wastewater using microbial fuel cell technology, Biochem. Eng. J., 43, 246, 10.1016/j.bej.2008.10.005
Ren, 2008, Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells, Water Sci. Technol., 58, 617, 10.2166/wst.2008.431
Zhang, 2009, Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells, Appl. Environ. Microbiol., 75, 3389, 10.1128/AEM.02240-08
Zhang, 2009, Pyridine degradation in the microbial fuel cells, J. Hazard. Mat., 172, 465, 10.1016/j.jhazmat.2009.07.027
Luo, 2009, Phenol degradation in microbial fuel cells, Chem. Eng. J., 147, 259, 10.1016/j.cej.2008.07.011
Zhu, 2009, Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell, Electrochem. Comm., 11, 274, 10.1016/j.elecom.2008.11.023
Liu, 2004, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Env. Sci. Tech., 38, 4040, 10.1021/es0499344
You, 2006, Biological wastewater treatment and simultaneous generating electricity from organic wastewater by microbial fuel cell, Huan Jing Ke Xue, 27, 1786
Feng, 2008, Brewery wastewater treatment using air-cathode microbial fuel cells, App. Microbiol. Biotechnol., 78, 873, 10.1007/s00253-008-1360-2
Greenman, 2009, Landfill leachate treatment with microbial fuel cells; scale-up through plurality, Bioresour. Technol., 100, 5085, 10.1016/j.biortech.2009.05.061
Patil, 2009, Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber, Bioresour. Technol., 100, 5132, 10.1016/j.biortech.2009.05.041
Freguia, 2009, Microbial fuel cells operating on mixed fatty acids, Bioresour. Technol., 101, 1233, 10.1016/j.biortech.2009.09.054
Morris, 2008, Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater, J. Environm. Sci. Health A: Tox./Hazard. Subst. Environm. Eng., 43, 18, 10.1080/10934520701750389
Lin, 2005, Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill, Appl. Environ. Microbiol., 71, 5983, 10.1128/AEM.71.10.5983-5991.2005
Anderson, 1999, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65, 3056, 10.1128/AEM.65.7.3056-3063.1999
Roling, 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer, Appl. Environ. Microbiol., 67, 4619, 10.1128/AEM.67.10.4619-4629.2001
Lovley, 1989, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature, 339, 297, 10.1038/339297a0
Anderson, 1998, Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers, Environ. Sci. Technol., 32, 1222, 10.1021/es9704949
Lovley, 1996, Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms, Appl. Environ. Microbiol., 62, 288, 10.1128/aem.62.1.288-291.1996
Lovley, 1994, Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, Nature, 370, 128, 10.1038/370128a0
Lovley, 1996, Humic substances as electron acceptors for microbial respiration, Nature, 382, 445, 10.1038/382445a0
Lovley, 1997, Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers, J. Industr. Microbiol., 18, 75
Reddy, 2002, The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments, Environ. Sci. Technol., 36, 4754, 10.1021/es020656n
Rogers, 2002, Natural Attenuation of Polycyclic Aromatic Hydrocarbon-Contaminated Sites: Review, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 6, 141, 10.1061/(ASCE)1090-025X(2002)6:3(141)
Frysinger, 2003, Resolving the unresolved complex mixture in petroleum-contaminated sediments, Environ. Sci. Technol., 37, 1653, 10.1021/es020742n
Zhang, T., Gannon, S.M., Nevin, K.P., Franks, A.E., and Lovley, D.R. (2010). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminatedsediments by providing an electrode as the electron acceptor. Environm. Microbiol. Rep.
Borole, 2009, Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells, Biotechnol. Biofuels, 2, 7, 10.1186/1754-6834-2-7
Kerzenmacher, 2008, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, J. Power Sourc., 182, 1, 10.1016/j.jpowsour.2008.03.031
Kim, 2003, A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V, J. Electrochem. Soc., 150, A209, 10.1149/1.1534095
Minteer, 2007, Enzyme-based biofuel cells, Curr. Opin. Biotechnol., 18, 228, 10.1016/j.copbio.2007.03.007
Gallaway, 2004, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev., 104, 4867, 10.1021/cr020719k
Mingui, 2006, Passing data and supplying power to neural implants, IEEE Eng. Med. Biol. Mag., 25, 39, 10.1109/MEMB.2006.1705746
Justin, G.A., Zhang, Y., Sun, M., and Sclabassi, R. (, January April). An investigation of the ability of white blood cells to generate electricity in biofuel cells. Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, Hoboken, NJ, USA.
Lovley, 2006, Bug juice: harvesting electricity with microorganisms, Nature Rev. Microbiol., 4, 497, 10.1038/nrmicro1442
Rabaey, 2004, Biofuel cells select for microbial consortia that self-mediate elecron transfer, Appl. Environ. Microbiol., 70, 5373, 10.1128/AEM.70.9.5373-5382.2004
Phung, 2004, Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences, FEMS Microb. Lett., 233, 77, 10.1016/j.femsle.2004.01.041
Aelterman, 2006, Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environ. Sci. Technol., 40, 3388, 10.1021/es0525511
Kim, 2004, Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell, App. Microbiol. and Biotechnol., 63, 672, 10.1007/s00253-003-1412-6
Pham, 2008, Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer, Appl. Microbiol. Biotechnol., 77, 1119, 10.1007/s00253-007-1248-6
Park, 2001, A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7, 297, 10.1006/anae.2001.0399
Bond, 2005, Evidence for Involvement of an Electron Shuttle in Electricity Generation by Geothrix fermentans, Appl. Environ. Microbiol., 71, 2186, 10.1128/AEM.71.4.2186-2189.2005
Zhang, 2008, The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell, Electrochem. Comm., 10, 293, 10.1016/j.elecom.2007.12.009
Zuo, 2007, Tubular membrane cathodes for scalable power generation in microbial fuel cells, Env. Sci. Tech., 41, 3347, 10.1021/es0627601
Zhao, 2008, Activated carbon cloth as anode for sulfate removal in a microbial fuel cell, Environ. Sci Technol., 42, 4971, 10.1021/es8003766
Borole, 2008, A microbial fuel cell operating at low pH using the acidophile acidiphilium cryptum, Biotechnol. Lett., 30, 1367, 10.1007/s10529-008-9700-y
Zhang, 2006, Sequencing genomes from single cells by polymerase cloning, Nat. Biotechnol., 24, 680, 10.1038/nbt1214
Holmes, 2004, Potential role of a novel psychrotolerant Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by the marine sediment fuel cell, Appl. Environ. Microbiol., 70, 6023, 10.1128/AEM.70.10.6023-6030.2004
Chaudhuri, 2003, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol., 21, 1229, 10.1038/nbt867
Walker, 2006, Biological fuel cell and an application as a reserve power source, J. Power Sourc., 160, 123, 10.1016/j.jpowsour.2006.01.077
Prasad, 2007, Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell, Biosen. Bioelectron., 22, 2604, 10.1016/j.bios.2006.10.028
Freguia, 2008, Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes, Environ. Sci. Technol., 42, 7937, 10.1021/es800482e
Torres, 2007, Kinetics of consumption of fermentation products by anode-respiring bacteria, App. Microbiol. Biotechnol., 77, 689, 10.1007/s00253-007-1198-z
Lee, 2008, Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates, Water Res., 42, 1501, 10.1016/j.watres.2007.10.036
Lanthier, 2008, Growth with high planktonic biomass in Shewanella oneidensis fuel cells, FEMS Microbiol. Lett., 278, 29, 10.1111/j.1574-6968.2007.00964.x
Rabaey, 2003, A microbial fuel cell cabable lf converting glucose to electricity at high rate and efficiency, Biotech. Lett., 25, 1531, 10.1023/A:1025484009367
Rittmann, B.E., Torres, C.I., and Marcus, A.K. (2008). Emerging Environmental Technologies, Springer.
Cheng, 2006, Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells, Env. Sci. Tech., 40, 364, 10.1021/es0512071
Zhao, 2005, Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells, Electrochem. Comm., 7, 1405, 10.1016/j.elecom.2005.09.032
Nevin, K.P., Kim, B.C., Glaven, R.H., Johnson, J.P., Woodard, T.L., Methe, B.A., DiDonato, R.J., Covalla, S.F., Franks, A.E., Liu, A., and Lovley, D.R. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE, 4.
Rabaey, 2008, Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells, ISME J., 2, 519, 10.1038/ismej.2008.1
Rabaey, 2005, Microbial phenazine production enhances electron transfer in biofuel cells, Environ. Sci. Technol., 39, 3401, 10.1021/es048563o
Sund, 2007, Effect of electron mediators on current generation and fermentation in a microbial fuel cell, Appl. Microbiol. Biotechnol., 76, 561, 10.1007/s00253-007-1038-1
Logan, 2006, Microbial fuel cells: Methodology and technology, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Richter, 2009, Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer, Energ. Environ. Sci., 2, 506, 10.1039/b816647a
Fricke, 2008, On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells, Energ. Environ. Sci., 1, 144, 10.1039/b802363h
Busalmen, 2008, Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport, Environ. Sci. Technol., 42, 2445, 10.1021/es702569y
Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., and Peng, Z. (2006). A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. Camb., 2257–2259.
Srikanth, 2008, Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes, Biotechnol. Bioeng., 99, 1065, 10.1002/bit.21671
Dumas, 2008, Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell, Bioresour. Technol., 99, 8887, 10.1016/j.biortech.2008.04.054
Cheng, 2009, A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat, Bioelectrochemistry, 74, 227, 10.1016/j.bioelechem.2008.10.002
Marsili, 2008, Shewanella secretes flavins that mediate extracellular electron transfer, Proc. Natl. Acad. Sci. USA, 105, 3968, 10.1073/pnas.0710525105
Nevin, 2002, Novel mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans, Appl. Envioron. Microbiol., 68, 2294, 10.1128/AEM.68.5.2294-2299.2002
Hernandez, 2004, Phenazines and other redox-active antibiotics promote microbial mineral reduction, Appl. Environ. Microbiol., 70, 921, 10.1128/AEM.70.2.921-928.2004
Reguera, 2005, Extracellular electron transfer via microbial nanowires, Nature, 435, 1098, 10.1038/nature03661
Myers, 1992, Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1, J. Bacteriol., 174, 3429, 10.1128/jb.174.11.3429-3438.1992
Lovley, 2006, Microbial fuel cells: Covel microbial physiologies and engineering approaches, Curr. Opin. Biotechnol., 17, 327, 10.1016/j.copbio.2006.04.006
Lovley, 2008, The microbe electric: Conversion of organic matter to electricity, Curr. Opin. Biotechnol., 19, 564, 10.1016/j.copbio.2008.10.005
Lovley, 2008, Extracellular electron transfer: Wires, capacitors, iron lungs, and more, Geobiology, 6, 225, 10.1111/j.1472-4669.2008.00148.x
Holmes, 2004, Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments, Microbial Ecol., 48, 178, 10.1007/s00248-003-0004-4
Ishii, 2008, Comparison of electrode reduction activities of geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell, Appl. Environ. Microbiol., 74, 7348, 10.1128/AEM.01639-08
Nelson, 2003, The genome of Geobacter sulfurreducens: Insights into metal reduction in subsurface environments, Science, 302, 1967, 10.1126/science.1088727
Coppi, 2001, Development of a genetic system for Geobacter sulfurreducens, Appl. Environ. Microbiol., 67, 3180, 10.1128/AEM.67.7.3180-3187.2001
Postier, B.L., DiDonato, R.J., Nevin, K.P., Liu, A., Frank, B., Lovley, D.R., and Methe, B.A. (2008). Benefits of electrochemically synthesized oligonucleotide microarrays for analysis of gene expression in understudied microorganisms. J. Microbiol. Methods, (in press).
Park, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation, Biotechnol. Bioeng., 81, 348, 10.1002/bit.10501
Logan, 2006, Electricity-producing bacterial communities in microbial fuel cells, Trend Microbiol., 14, 512, 10.1016/j.tim.2006.10.003
Debabov, 2008, Electricity from microorganisms, Mikrobiologiia, 77, 149
Chang, 2006, Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells, J. Microbiol. Biotechnol., 16, 163
Kim, 2005, OmcF, a putative c-Type monoheme outer membrane cytochrome required for the expression of other outer membrane cytochromes in Geobacter sulfurreducens, J. Bacteriol., 187, 4505, 10.1128/JB.187.13.4505-4513.2005
Holmes, 2006, Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens, Env. Microbiol., 8, 1805, 10.1111/j.1462-2920.2006.01065.x
Holmes, 2008, Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes, Microbiol., 154, 1422, 10.1099/mic.0.2007/014365-0
Busalmen, 2008, C-type cytochromes wire electricity-producing bacteria to electrodes, Angew. Chem. Int. Ed. Engl., 47, 4874, 10.1002/anie.200801310
Franks, 2009, Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm, Energ. Environ. Sci., 2, 113, 10.1039/B816445B
Reguera, 2006, Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens Fuel Cells, Appl. Environ. Microbiol., 72, 7345, 10.1128/AEM.01444-06
Torres, 2007, Conduction-based modeling of the biofilm anode of a microbial fuel cell, Biotechnol. Bioeng., 98, 1171, 10.1002/bit.21533
Picioreanu, 2007, A computational model for biofilm-based microbial fuel cells, Water Res., 41, 2921, 10.1016/j.watres.2007.04.009
Mas, 2006, On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network, Sensor Actuat. B: Chem., 118, 129, 10.1016/j.snb.2006.04.070
Dheilly, 2008, Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry, Appl. Microbiol. Biotechnol., 79, 157, 10.1007/s00253-008-1404-7
Tribollet, 1999, In situ detection and characterization of biofilm in waters by electrochemical methods, Electrochimica Acta, 45, 1067, 10.1016/S0013-4686(99)00310-2
Izallalen, 2008, Geobacter sulfurreducens strain engineered for increased rates of respiration, Met. Eng., 10, 267, 10.1016/j.ymben.2008.06.005
Mahadevan, 2006, Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling, Appl. Environ. Microbiol., 72, 1558, 10.1128/AEM.72.2.1558-1568.2006
Yi, 2009, Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells, Biosens. Bioelectron., 24, 3498, 10.1016/j.bios.2009.05.004
Torres, 2008, Carbonate species as OH- carriers for decreasing the pH gradient between cathode and anode in biological fuel cells, Environ. Sci. Technol., 42, 8773, 10.1021/es8019353
Torres, 2008, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng., 100, 872, 10.1002/bit.21821
Lee, 2009, Effects of Substrate Diffusion and Anode Potential on Kinetic Parameters for Anode-Respiring Bacteria, Environ. Scienc. Technol., 43, 7571, 10.1021/es9015519
Franks, A.E., Nevin, K.P., Glaven, R.H., and Lovley, D.R. (2010). Microtoming Coupled to Microarray Analysis to Evaluate the Spatial Metabolic Status of Geobacter sulfurreducens Biofilms. ISME J.
Logan, 2006, Microbial fuel cells-challenges and applications, Environ. Sci. Technol., 40, 5172, 10.1021/es0627592
Clauwaert, 2007, Open air biocathode enables effective electricity generation with microbial fuel cells, Environ. Scienc. Technol., 41, 7564, 10.1021/es0709831
Carver, 2008, Cathodic limitations in microbial fuel cells: An overview, J. Power Sourc., 180, 683, 10.1016/j.jpowsour.2008.02.074
Gil, 2003, Operational parameters affecting the performannce of a mediator-less microbial fuel cell, Biosens. Bioelectron., 18, 327, 10.1016/S0956-5663(02)00110-0
Rabaey, 2005, Tubular microbial fuel cells for efficient electricity generation, Environ. Sci. Technol., 39, 8077, 10.1021/es050986i
Gregory, 2004, Graphite electrodes as electron donors for anaerobic respiration, Env. Microbiol., 6, 596, 10.1111/j.1462-2920.2004.00593.x
Gregory, 2005, Remediation and recovery of uranium from contaminated subsurface environments with electrodes, Env. Sci. Tech., 39, 8943, 10.1021/es050457e
Rhoads, 2005, Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant, Environ. Sci. Technol., 39, 4666, 10.1021/es048386r
Tran, 2009, Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell, Water Sci. Technol., 59, 1803, 10.2166/wst.2009.209
Bergel, 2005, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm, Electrochem. Comm., 7, 900, 10.1016/j.elecom.2005.06.006
You, 2009, Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material, Fuel Cells, 9, 588, 10.1002/fuce.200900023
Chen, 2008, Application of biocathode in microbial fuel cells: Cell performance and microbial community, App. Microbiol. Biotechnol., 79, 379, 10.1007/s00253-008-1451-0
Strycharz, 2010, Reductive dechlorination of 2-chlorophenol by anaeromyxobacter dehalogenans with an electrode serving as the electron donor, Environ. Microbio. Environ. Microbiol. Report, 2, 289, 10.1111/j.1758-2229.2009.00118.x