MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment

Journal of Clinical Medicine - Tập 4 Số 9 - Trang 1688-1712
María J. Lorenzo Pisarello1, Lorena Loarca2, Tommy Ivanics3, Leslie A. Morton4, Nicholas F. LaRusso5
1Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA.
2Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA. [email protected].
3Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
4Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA. [email protected].
5Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Signaling in Gastroenterology, Mayo Clinic, Rochester, MN 55905, USA. [email protected].

Tóm tắt

The cholangiopathies are a group of liver diseases resulting from different etiologies but with the cholangiocyte as the primary target. As a group, the cholangiopathies result in significant morbidity and mortality and represent one of the main indications for liver transplant in both children and adults. Contributing to this situation is the absence of a thorough understanding of their pathogenesis and a lack of adequate diagnostic and prognostic biomarkers. MicroRNAs are small non-coding RNAs that modify gene expression post-transcriptionally. They have been implicated in the pathogenesis of many diseases, including the cholangiopathies. Thus, in this review we provide an overview of the literature on miRNAs in the cholangiopathies and discuss future research directions.

Từ khóa


Tài liệu tham khảo

Han, 2013, Recent advances in the morphological and functional heterogeneity of the biliary epithelium, Exp. Biol. Med., 238, 549, 10.1177/1535370213489926

Johnson, L., Ghishan, F., Kaunitz, J., Merchant, J., Said, H., and Wood, J. (2011). Physiology of the Gastrointestinal Tract, Elsevier. [5th ed.].

Schaffner, 1961, Electron. Microscopic Studies of Normal and Proliferated Bile Ductules, Am. J. Pathol., 38, 393

Sasaki, 1967, Bile ductules in cholestasis: Morphologic evidence for secretion and absorption in man, Lab. Investig., 16, 84

Arias, J.B.I., Fausto, N., Jakoby, W., Schachter, D., and Shafritz, D. (1994). The Liver: Biology and Pathobiology, Raven Press.

Masyuk, 2006, Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling, Gastroenterology, 131, 911, 10.1053/j.gastro.2006.07.003

Gradilone, 2007, Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion, Proc. Natl. Acad. Sci. USA, 104, 19138, 10.1073/pnas.0705964104

Masyuk, 2008, Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors, Am. J. Physiol. Gastrointest. Liver Physiol., 295, G725, 10.1152/ajpgi.90265.2008

Masyuk, 2010, Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia, Am. J. Physiol. Gastrointest. Liver Physiol., 299, G990, 10.1152/ajpgi.00093.2010

Masyuk, 2008, Cholangiocyte primary cilia in liver health and disease, Dev. Dyn., 237, 2007, 10.1002/dvdy.21530

Bogert, 2007, Cholangiocyte biology, Curr. Opin. Gastroenterol., 23, 299, 10.1097/MOG.0b013e3280b079fb

Lazaridis, 2004, The cholangiopathies: Disorders of biliary epithelia, Gastroenterology, 127, 1565, 10.1053/j.gastro.2004.08.006

Tabibian, 2013, The dynamic biliary epithelia: Molecules, pathways, and disease, J. Hepatol., 58, 575, 10.1016/j.jhep.2012.10.011

Lee, 1993, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843, 10.1016/0092-8674(93)90529-Y

Carthew, 2009, Origins and Mechanisms of miRNAs and siRNAs, Cell, 136, 642, 10.1016/j.cell.2009.01.035

Iorio, 2012, microRNA involvement in human cancer, Carcinogenesis, 33, 1126, 10.1093/carcin/bgs140

Ambros, 2003, MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing, Cell, 113, 673, 10.1016/S0092-8674(03)00428-8

Wang, 2015, Profiling and initial validation of urinary microRNAs as biomarkers in IgA nephropathy, Peer J., 3, e990, 10.7717/peerj.990

Cappelletti, 2015, Circulating Biomarkers for Prediction of Treatment Response, J. Natl. Cancer Inst. Monogr., 2015, 60, 10.1093/jncimonographs/lgv006

Ramos, 2015, A Pilot Study Identifying a Set of microRNAs As Precise Diagnostic Biomarkers of Acute Kidney Injury, PLoS ONE, 10, e0127175, 10.1371/journal.pone.0127175

Yun, 2015, Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9–5p Could Be Valuable Diagnostic Markers, Int. Neurourol. J., 19, 74, 10.5213/inj.2015.19.2.74

Nouraee, 2015, miRNA therapeutics in cardiovascular diseases: Promises and problems, Front. Genet., 6, 232, 10.3389/fgene.2015.00232

Turchinovich, 2015, Check and mate to exosomal extracellular miRNA: New lesson from a new approach, Front. Mol. Biosci., 2, 11, 10.3389/fmolb.2015.00011

Tan, 2015, Differential expression of serum microRNAs in cirrhosis that evolve into hepatocellular carcinoma related to hepatitis B virus, Oncol. Rep., 33, 2863, 10.3892/or.2015.3924

Li, G., Shen, Q., Li, C., Li, D., Chen, J., and He, M. (2015). Identification of circulating MicroRNAs as novel potential biomarkers for hepatocellular carcinoma detection: A systematic review and meta-analysis. Clin. Transl. Oncol.

Vlasov, 2015, Circulating microRNAs in lung cancer: Prospects for diagnostics, prognosis and prediction of antitumor treatment efficiency, Mol. Biol., 49, 55

Lan, 2015, MicroRNAs as potential biomarkers in cancer: Opportunities and challenges, Biomed. Res. Int., 2015, 125094, 10.1155/2015/125094

Schena, 2015, microRNAs in glomerular diseases from pathophysiology to potential treatment target, Clin. Sci., 128, 775, 10.1042/CS20140733

Gradilone, 2015, MicroRNAs and benign biliary tract diseases, Semin. Liver Dis., 35, 26, 10.1055/s-0034-1397346

Hand, 2012, MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experimental biliary atresia, J. Pediatr. Gastroenterol. Nutr., 54, 186, 10.1097/MPG.0b013e318244148b

Bessho, 2013, Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia, BMC Syst. Biol., 7, 104, 10.1186/1752-0509-7-104

Hand, 2009, The microRNA-30 family is required for vertebrate hepatobiliary development, Gastroenterology, 136, 1081, 10.1053/j.gastro.2008.12.006

Shen, 2014, MicroRNA-21/PTEN/Akt axis in the fibrogenesis of biliary atresia, J. Pediatr. Surg., 49, 1738, 10.1016/j.jpedsurg.2014.09.009

Dong, 2015, miR-222 Overexpression May Contribute to Liver Fibrosis in Biliary Atresia by Targeting PPP2R2A, Hepatology, 60, 84

Xiao, 2014, Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stellate cells by activating PI3K/Akt signaling, Cell. Signal., 26, 925, 10.1016/j.cellsig.2014.01.003

Roderburg, 2011, Micro-RNA Profiling Reveals a Role for miR-29 in Human and Murine Liver Fibrosis, Hepatology, 53, 209, 10.1002/hep.23922

Banales, 2012, Upregulation of mir-506 Leads to Decreased AE2 Expression in Biiary Epithelium of Patients with Primary Biliary Cirrhosis, Hepatology, 56, 687, 10.1002/hep.25691

Ando, 2013, Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse, J. Autoimmun., 41, 111, 10.1016/j.jaut.2012.12.013

Perugorria, 2014, Polycystic liver diseases: Advanced insights into the molecular mechanisms, Nat. Rev. Gastroenterol. Hepatol., 11, 750, 10.1038/nrgastro.2014.155

Masyuk, 2009, MicroRNAs in cholangiociliopathies, Cell Cycle, 8, 1324, 10.4161/cc.8.9.8253

Sun, 2015, Inhibition of MiR-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting CDKN1C, Med. Sci. Monit., 21, 195, 10.12659/MSM.892141

Olaru, 2011, MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint, Hepatology, 54, 2089, 10.1002/hep.24591

Selaru, 2009, MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3, Hepatology, 49, 1595, 10.1002/hep.22838

Lu, 2014, miR-21 targets 15-PGDH and promotes cholangiocarcinoma growth, Mol. Cancer Res., 12, 890, 10.1158/1541-7786.MCR-13-0419

Braconi, 2010, MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes, Hepatology, 51, 881

Padgett, 2009, Primary biliary cirrhosis is associated with altered hepatic microRNA expression, J. Autoimmun., 32, 246, 10.1016/j.jaut.2009.02.022

Katsushima, 2014, Expression of micro-RNAs in peripheral blood mononuclear cells from primary biliary cirrhosis patients, Hepatol. Res., 44, E189, 10.1111/hepr.12198

Tabibian, 2014, Cholangiocyte Senescence by Way of N-Ras Activation Is a Characteristic of Primary Sclerosing Cholangitis, Hepatology, 59, 2263, 10.1002/hep.26993

Li, 2014, Human Bile Contains MicroRNA-Laden Extracellular Vesicles That Can. Be Used for Cholangiocarcinoma Diagnosis, Hepatology, 60, 896, 10.1002/hep.27050

Masyuk, 2009, MicroRNAs in cholangiociliopathies, Cell Cycle, 8, 1324, 10.4161/cc.8.9.8253

Gabow, 1993, Autosomal dominant polycystic kidney disease, N. Engl. J. Med., 329, 332, 10.1056/NEJM199307293290508

Grantham, 2006, Volume progression in autosomal dominant polycystic kidney disease: The major factor determining clinical outcomes, Clin. J. Am. Soc. Nephrol., 1, 148, 10.2215/CJN.00330705

Onori, 2010, Polycystic liver diseases, Dig. Liver Dis., 42, 261, 10.1016/j.dld.2010.01.006

Bhatt, 2011, microRNAs in kidneys: Biogenesis, regulation, and pathophysiological roles, Am. J. Physiol. Renal Physiol., 300, F602, 10.1152/ajprenal.00727.2010

Lee, 2008, MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease, J. Clin. Investig., 118, 3714, 10.1172/JCI34922

Pandey, 2008, Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease, BMC Genom., 9, 624, 10.1186/1471-2164-9-624

Patel, 2013, miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease, Proc. Natl. Acad. Sci. USA, 110, 10765, 10.1073/pnas.1301693110

Patel, 2012, MicroRNAs regulate renal tubule maturation through modulation of Pkd1, J. Am. Soc. Nephrol., 23, 1941, 10.1681/ASN.2012030321

Dweep, 2013, Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: Using PKD/Mhm rat model, PLoS ONE, 8, e53780, 10.1371/journal.pone.0053780

Pandey, 2011, Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease, BMC Syst. Biol., 5, 56, 10.1186/1752-0509-5-56

Wills, 2014, Polycystic liver disease: Ductal plate malformation and the primary cilium, Trends Mol. Med., 20, 261, 10.1016/j.molmed.2014.01.003

Gores, 1999, Biliary tract cancers, N. Engl. J. Med., 341, 1368, 10.1056/NEJM199910283411807

Razumilava, 2014, Cholangiocarcinoma, Lancet, 383, 2168, 10.1016/S0140-6736(13)61903-0

Nikitina, 2012, MicroRNAs and human cancer, Exp. Oncol., 34, 2

Mendell, 2012, MicroRNAs in stress signaling and human disease, Cell, 148, 1172, 10.1016/j.cell.2012.02.005

Hijona, 2012, MicroRNAs in biliary diseases, World J. Gastroenterol., 18, 6189, 10.3748/wjg.v18.i43.6189

Haga, 2014, Emerging insights into the role of microRNAs in the pathogenesis of cholangiocarcinoma, Gene Expr., 16, 93, 10.3727/105221614X13919976902174

Chen, 2009, The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma, J. Hepatol., 50, 358, 10.1016/j.jhep.2008.09.015

Yamanaka, 2012, Coordinated effects of microRNA-494 induce G(2)/M arrest in human cholangiocarcinoma, Cell Cycle, 11, 2729, 10.4161/cc.21105

Hu, 2013, miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1, Exp. Ther. Med., 6, 1265, 10.3892/etm.2013.1311

Razumilava, 2012, miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma, Hepatology, 55, 465, 10.1002/hep.24698

Yang, 2014, MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b, BMC Cancer, 14, 917, 10.1186/1471-2407-14-917

Meng, 2007, The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes, J. Biol. Chem., 282, 8256, 10.1074/jbc.M607712200

Iwaki, 2013, MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line, PLoS ONE, 8, e69496, 10.1371/journal.pone.0069496

Zhang, 2013, miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF), Am. J. Pathol., 182, 1629, 10.1016/j.ajpath.2013.01.045

Okamoto, 2013, miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells, PLoS ONE, 8, e77623, 10.1371/journal.pone.0077623

Meng, 2006, Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines, Gastroenterology, 130, 2113, 10.1053/j.gastro.2006.02.057

Ji, 2013, Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components, Proteomics, 13, 1672, 10.1002/pmic.201200562

Chiam, 2015, Circulating Serum Exosomal miRNAs As Potential Biomarkers for Esophageal Adenocarcinoma, J. Gastrointest. Surg., 19, 1208, 10.1007/s11605-015-2829-9

Urbanelli, 2013, Signaling pathways in exosomes biogenesis, secretion and fate, Genes, 4, 152, 10.3390/genes4020152

Hurley, 2012, Get on the exosome bus with ALIX, Nat. Cell Biol., 14, 654, 10.1038/ncb2530

Babst, 2011, MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between, Curr. Opin. Cell Biol., 23, 452, 10.1016/j.ceb.2011.04.008

Cheng, L., Sharples, R.A., Scicluna, B.J., and Hill, A.F. (2014). Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles, 3.

Gupta, 2010, Optical Photoacoustic Detection of Circulating Melanoma Cells In Vitro, Int. J. Thermophys., 31, 784, 10.1007/s10765-010-0770-4

Hunter, 2008, Detection of microRNA expression in human peripheral blood microvesicles, PLoS ONE, 3, e3694, 10.1371/journal.pone.0003694

Skog, 2008, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat. Cell Biol., 10, 1470, 10.1038/ncb1800

Gupta, 2010, Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease, Circ. Cardiovasc. Genet., 3, 484, 10.1161/CIRCGENETICS.110.958363

Lee, 2009, Silencing by small RNAs is linked to endosomal trafficking, Nat. Cell Biol., 11, 1150, 10.1038/ncb1930

Gibbings, 2009, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol., 11, 1143, 10.1038/ncb1929

Yuan, 2009, Transfer of microRNAs by embryonic stem cell microvesicles, PLoS ONE, 4, e4722, 10.1371/journal.pone.0004722

Pegtel, 2010, Functional delivery of viral miRNAs via exosomes, Proc. Natl. Acad. Sci. USA, 107, 6328, 10.1073/pnas.0914843107

Mekenkamp, 2011, MicroRNAs in colorectal cancer metastasis, J. Pathol., 224, 438, 10.1002/path.2922

Chiba, 2012, Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines, Oncol. Rep., 28, 1551, 10.3892/or.2012.1967

Altekruse, 2009, Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005, J. Clin. Oncol., 27, 1485, 10.1200/JCO.2008.20.7753

Wang, H., Hou, L., Li, A., Duan, Y., Gao, H., and Song, X. (2014). Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. BioMed. Res. Int., 2014.

Majka, 2001, Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment, Blood, 98, 3143, 10.1182/blood.V98.10.3143

Morel, 2004, Cellular microparticles: A disseminated storage pool of bioactive vascular effectors, Curr. Opin. Hematol., 11, 156, 10.1097/01.moh.0000131441.10020.87

Cocucci, 2009, Shedding microvesicles: Artefacts no more, Trends Cell Biol., 19, 43, 10.1016/j.tcb.2008.11.003

Mulcahy, L.A., Pink, R.C., and Carter, D.R. (2014). Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 3.

Shigehara, 2011, Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer, PLoS ONE, 6, e23584, 10.1371/journal.pone.0023584

Silakit, 2014, Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: A prospective prognostic indicator, J. Hepatobiliary Pancreat. Sci., 21, 864, 10.1002/jhbp.145

Karakatsanis, 2013, Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance, Mol. Carcinog., 52, 297, 10.1002/mc.21864

McNally, 2013, Concomitant dysregulation of microRNAs miR-151–3p and miR-126 correlates with improved survival in resected cholangiocarcinoma, HPB, 15, 260, 10.1111/j.1477-2574.2012.00523.x

Huang, 2013, MicroRNA-21 regulates the invasion and metastasis in cholangiocarcinoma and may be a potential biomarker for cancer prognosis, Asian Pac. J. Cancer Prev., 14, 829, 10.7314/APJCP.2013.14.2.829

Plieskatt, 2015, A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma, BMC Cancer, 15, 309, 10.1186/s12885-015-1270-5

Tan, 2014, Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: Description of miRNA profiles at baseline, PLoS ONE, 9, e86856, 10.1371/journal.pone.0086856

Ninomiya, 2013, Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505–3p and miR197–3p as novel biomarkers, PLoS ONE, 8, e66086, 10.1371/journal.pone.0066086

Qin, 2013, Analysis of altered microRNA expression profiles in peripheral blood mononuclear cells from patients with primary biliary cirrhosis, J. Gastroenterol. Hepatol., 28, 543, 10.1111/jgh.12040

Tan, 2014, Serum microRNAs as potential biomarkers of primary biliary cirrhosis, PLoS ONE, 9, e111424, 10.1371/journal.pone.0111424

Zahm, 2012, Circulating MicroRNA is a Biomarker of Biliary Atresia, J. Pediatr. Gastroenterol Nutr., 55, 366, 10.1097/MPG.0b013e318264e648