MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment
Tóm tắt
Từ khóa
Tài liệu tham khảo
Han, 2013, Recent advances in the morphological and functional heterogeneity of the biliary epithelium, Exp. Biol. Med., 238, 549, 10.1177/1535370213489926
Johnson, L., Ghishan, F., Kaunitz, J., Merchant, J., Said, H., and Wood, J. (2011). Physiology of the Gastrointestinal Tract, Elsevier. [5th ed.].
Schaffner, 1961, Electron. Microscopic Studies of Normal and Proliferated Bile Ductules, Am. J. Pathol., 38, 393
Sasaki, 1967, Bile ductules in cholestasis: Morphologic evidence for secretion and absorption in man, Lab. Investig., 16, 84
Arias, J.B.I., Fausto, N., Jakoby, W., Schachter, D., and Shafritz, D. (1994). The Liver: Biology and Pathobiology, Raven Press.
Masyuk, 2006, Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling, Gastroenterology, 131, 911, 10.1053/j.gastro.2006.07.003
Gradilone, 2007, Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion, Proc. Natl. Acad. Sci. USA, 104, 19138, 10.1073/pnas.0705964104
Masyuk, 2008, Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors, Am. J. Physiol. Gastrointest. Liver Physiol., 295, G725, 10.1152/ajpgi.90265.2008
Masyuk, 2010, Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia, Am. J. Physiol. Gastrointest. Liver Physiol., 299, G990, 10.1152/ajpgi.00093.2010
Masyuk, 2008, Cholangiocyte primary cilia in liver health and disease, Dev. Dyn., 237, 2007, 10.1002/dvdy.21530
Bogert, 2007, Cholangiocyte biology, Curr. Opin. Gastroenterol., 23, 299, 10.1097/MOG.0b013e3280b079fb
Lazaridis, 2004, The cholangiopathies: Disorders of biliary epithelia, Gastroenterology, 127, 1565, 10.1053/j.gastro.2004.08.006
Tabibian, 2013, The dynamic biliary epithelia: Molecules, pathways, and disease, J. Hepatol., 58, 575, 10.1016/j.jhep.2012.10.011
Lee, 1993, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843, 10.1016/0092-8674(93)90529-Y
Carthew, 2009, Origins and Mechanisms of miRNAs and siRNAs, Cell, 136, 642, 10.1016/j.cell.2009.01.035
Ambros, 2003, MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing, Cell, 113, 673, 10.1016/S0092-8674(03)00428-8
Wang, 2015, Profiling and initial validation of urinary microRNAs as biomarkers in IgA nephropathy, Peer J., 3, e990, 10.7717/peerj.990
Cappelletti, 2015, Circulating Biomarkers for Prediction of Treatment Response, J. Natl. Cancer Inst. Monogr., 2015, 60, 10.1093/jncimonographs/lgv006
Ramos, 2015, A Pilot Study Identifying a Set of microRNAs As Precise Diagnostic Biomarkers of Acute Kidney Injury, PLoS ONE, 10, e0127175, 10.1371/journal.pone.0127175
Yun, 2015, Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9–5p Could Be Valuable Diagnostic Markers, Int. Neurourol. J., 19, 74, 10.5213/inj.2015.19.2.74
Nouraee, 2015, miRNA therapeutics in cardiovascular diseases: Promises and problems, Front. Genet., 6, 232, 10.3389/fgene.2015.00232
Turchinovich, 2015, Check and mate to exosomal extracellular miRNA: New lesson from a new approach, Front. Mol. Biosci., 2, 11, 10.3389/fmolb.2015.00011
Tan, 2015, Differential expression of serum microRNAs in cirrhosis that evolve into hepatocellular carcinoma related to hepatitis B virus, Oncol. Rep., 33, 2863, 10.3892/or.2015.3924
Li, G., Shen, Q., Li, C., Li, D., Chen, J., and He, M. (2015). Identification of circulating MicroRNAs as novel potential biomarkers for hepatocellular carcinoma detection: A systematic review and meta-analysis. Clin. Transl. Oncol.
Vlasov, 2015, Circulating microRNAs in lung cancer: Prospects for diagnostics, prognosis and prediction of antitumor treatment efficiency, Mol. Biol., 49, 55
Lan, 2015, MicroRNAs as potential biomarkers in cancer: Opportunities and challenges, Biomed. Res. Int., 2015, 125094, 10.1155/2015/125094
Schena, 2015, microRNAs in glomerular diseases from pathophysiology to potential treatment target, Clin. Sci., 128, 775, 10.1042/CS20140733
Gradilone, 2015, MicroRNAs and benign biliary tract diseases, Semin. Liver Dis., 35, 26, 10.1055/s-0034-1397346
Hand, 2012, MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experimental biliary atresia, J. Pediatr. Gastroenterol. Nutr., 54, 186, 10.1097/MPG.0b013e318244148b
Bessho, 2013, Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia, BMC Syst. Biol., 7, 104, 10.1186/1752-0509-7-104
Hand, 2009, The microRNA-30 family is required for vertebrate hepatobiliary development, Gastroenterology, 136, 1081, 10.1053/j.gastro.2008.12.006
Shen, 2014, MicroRNA-21/PTEN/Akt axis in the fibrogenesis of biliary atresia, J. Pediatr. Surg., 49, 1738, 10.1016/j.jpedsurg.2014.09.009
Dong, 2015, miR-222 Overexpression May Contribute to Liver Fibrosis in Biliary Atresia by Targeting PPP2R2A, Hepatology, 60, 84
Xiao, 2014, Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stellate cells by activating PI3K/Akt signaling, Cell. Signal., 26, 925, 10.1016/j.cellsig.2014.01.003
Roderburg, 2011, Micro-RNA Profiling Reveals a Role for miR-29 in Human and Murine Liver Fibrosis, Hepatology, 53, 209, 10.1002/hep.23922
Banales, 2012, Upregulation of mir-506 Leads to Decreased AE2 Expression in Biiary Epithelium of Patients with Primary Biliary Cirrhosis, Hepatology, 56, 687, 10.1002/hep.25691
Ando, 2013, Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse, J. Autoimmun., 41, 111, 10.1016/j.jaut.2012.12.013
Perugorria, 2014, Polycystic liver diseases: Advanced insights into the molecular mechanisms, Nat. Rev. Gastroenterol. Hepatol., 11, 750, 10.1038/nrgastro.2014.155
Sun, 2015, Inhibition of MiR-199a-5p reduced cell proliferation in autosomal dominant polycystic kidney disease through targeting CDKN1C, Med. Sci. Monit., 21, 195, 10.12659/MSM.892141
Olaru, 2011, MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint, Hepatology, 54, 2089, 10.1002/hep.24591
Selaru, 2009, MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3, Hepatology, 49, 1595, 10.1002/hep.22838
Lu, 2014, miR-21 targets 15-PGDH and promotes cholangiocarcinoma growth, Mol. Cancer Res., 12, 890, 10.1158/1541-7786.MCR-13-0419
Braconi, 2010, MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes, Hepatology, 51, 881
Padgett, 2009, Primary biliary cirrhosis is associated with altered hepatic microRNA expression, J. Autoimmun., 32, 246, 10.1016/j.jaut.2009.02.022
Katsushima, 2014, Expression of micro-RNAs in peripheral blood mononuclear cells from primary biliary cirrhosis patients, Hepatol. Res., 44, E189, 10.1111/hepr.12198
Tabibian, 2014, Cholangiocyte Senescence by Way of N-Ras Activation Is a Characteristic of Primary Sclerosing Cholangitis, Hepatology, 59, 2263, 10.1002/hep.26993
Li, 2014, Human Bile Contains MicroRNA-Laden Extracellular Vesicles That Can. Be Used for Cholangiocarcinoma Diagnosis, Hepatology, 60, 896, 10.1002/hep.27050
Gabow, 1993, Autosomal dominant polycystic kidney disease, N. Engl. J. Med., 329, 332, 10.1056/NEJM199307293290508
Grantham, 2006, Volume progression in autosomal dominant polycystic kidney disease: The major factor determining clinical outcomes, Clin. J. Am. Soc. Nephrol., 1, 148, 10.2215/CJN.00330705
Bhatt, 2011, microRNAs in kidneys: Biogenesis, regulation, and pathophysiological roles, Am. J. Physiol. Renal Physiol., 300, F602, 10.1152/ajprenal.00727.2010
Lee, 2008, MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease, J. Clin. Investig., 118, 3714, 10.1172/JCI34922
Pandey, 2008, Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease, BMC Genom., 9, 624, 10.1186/1471-2164-9-624
Patel, 2013, miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease, Proc. Natl. Acad. Sci. USA, 110, 10765, 10.1073/pnas.1301693110
Patel, 2012, MicroRNAs regulate renal tubule maturation through modulation of Pkd1, J. Am. Soc. Nephrol., 23, 1941, 10.1681/ASN.2012030321
Dweep, 2013, Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: Using PKD/Mhm rat model, PLoS ONE, 8, e53780, 10.1371/journal.pone.0053780
Pandey, 2011, Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease, BMC Syst. Biol., 5, 56, 10.1186/1752-0509-5-56
Wills, 2014, Polycystic liver disease: Ductal plate malformation and the primary cilium, Trends Mol. Med., 20, 261, 10.1016/j.molmed.2014.01.003
Nikitina, 2012, MicroRNAs and human cancer, Exp. Oncol., 34, 2
Mendell, 2012, MicroRNAs in stress signaling and human disease, Cell, 148, 1172, 10.1016/j.cell.2012.02.005
Hijona, 2012, MicroRNAs in biliary diseases, World J. Gastroenterol., 18, 6189, 10.3748/wjg.v18.i43.6189
Haga, 2014, Emerging insights into the role of microRNAs in the pathogenesis of cholangiocarcinoma, Gene Expr., 16, 93, 10.3727/105221614X13919976902174
Chen, 2009, The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma, J. Hepatol., 50, 358, 10.1016/j.jhep.2008.09.015
Yamanaka, 2012, Coordinated effects of microRNA-494 induce G(2)/M arrest in human cholangiocarcinoma, Cell Cycle, 11, 2729, 10.4161/cc.21105
Hu, 2013, miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1, Exp. Ther. Med., 6, 1265, 10.3892/etm.2013.1311
Razumilava, 2012, miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma, Hepatology, 55, 465, 10.1002/hep.24698
Yang, 2014, MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b, BMC Cancer, 14, 917, 10.1186/1471-2407-14-917
Meng, 2007, The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes, J. Biol. Chem., 282, 8256, 10.1074/jbc.M607712200
Iwaki, 2013, MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line, PLoS ONE, 8, e69496, 10.1371/journal.pone.0069496
Zhang, 2013, miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF), Am. J. Pathol., 182, 1629, 10.1016/j.ajpath.2013.01.045
Okamoto, 2013, miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells, PLoS ONE, 8, e77623, 10.1371/journal.pone.0077623
Meng, 2006, Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines, Gastroenterology, 130, 2113, 10.1053/j.gastro.2006.02.057
Ji, 2013, Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components, Proteomics, 13, 1672, 10.1002/pmic.201200562
Chiam, 2015, Circulating Serum Exosomal miRNAs As Potential Biomarkers for Esophageal Adenocarcinoma, J. Gastrointest. Surg., 19, 1208, 10.1007/s11605-015-2829-9
Urbanelli, 2013, Signaling pathways in exosomes biogenesis, secretion and fate, Genes, 4, 152, 10.3390/genes4020152
Babst, 2011, MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between, Curr. Opin. Cell Biol., 23, 452, 10.1016/j.ceb.2011.04.008
Cheng, L., Sharples, R.A., Scicluna, B.J., and Hill, A.F. (2014). Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J. Extracell. Vesicles, 3.
Gupta, 2010, Optical Photoacoustic Detection of Circulating Melanoma Cells In Vitro, Int. J. Thermophys., 31, 784, 10.1007/s10765-010-0770-4
Hunter, 2008, Detection of microRNA expression in human peripheral blood microvesicles, PLoS ONE, 3, e3694, 10.1371/journal.pone.0003694
Skog, 2008, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat. Cell Biol., 10, 1470, 10.1038/ncb1800
Gupta, 2010, Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease, Circ. Cardiovasc. Genet., 3, 484, 10.1161/CIRCGENETICS.110.958363
Lee, 2009, Silencing by small RNAs is linked to endosomal trafficking, Nat. Cell Biol., 11, 1150, 10.1038/ncb1930
Gibbings, 2009, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol., 11, 1143, 10.1038/ncb1929
Yuan, 2009, Transfer of microRNAs by embryonic stem cell microvesicles, PLoS ONE, 4, e4722, 10.1371/journal.pone.0004722
Pegtel, 2010, Functional delivery of viral miRNAs via exosomes, Proc. Natl. Acad. Sci. USA, 107, 6328, 10.1073/pnas.0914843107
Chiba, 2012, Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines, Oncol. Rep., 28, 1551, 10.3892/or.2012.1967
Altekruse, 2009, Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005, J. Clin. Oncol., 27, 1485, 10.1200/JCO.2008.20.7753
Wang, H., Hou, L., Li, A., Duan, Y., Gao, H., and Song, X. (2014). Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. BioMed. Res. Int., 2014.
Majka, 2001, Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment, Blood, 98, 3143, 10.1182/blood.V98.10.3143
Morel, 2004, Cellular microparticles: A disseminated storage pool of bioactive vascular effectors, Curr. Opin. Hematol., 11, 156, 10.1097/01.moh.0000131441.10020.87
Cocucci, 2009, Shedding microvesicles: Artefacts no more, Trends Cell Biol., 19, 43, 10.1016/j.tcb.2008.11.003
Mulcahy, L.A., Pink, R.C., and Carter, D.R. (2014). Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 3.
Shigehara, 2011, Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer, PLoS ONE, 6, e23584, 10.1371/journal.pone.0023584
Silakit, 2014, Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: A prospective prognostic indicator, J. Hepatobiliary Pancreat. Sci., 21, 864, 10.1002/jhbp.145
Karakatsanis, 2013, Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance, Mol. Carcinog., 52, 297, 10.1002/mc.21864
McNally, 2013, Concomitant dysregulation of microRNAs miR-151–3p and miR-126 correlates with improved survival in resected cholangiocarcinoma, HPB, 15, 260, 10.1111/j.1477-2574.2012.00523.x
Huang, 2013, MicroRNA-21 regulates the invasion and metastasis in cholangiocarcinoma and may be a potential biomarker for cancer prognosis, Asian Pac. J. Cancer Prev., 14, 829, 10.7314/APJCP.2013.14.2.829
Plieskatt, 2015, A microRNA profile associated with Opisthorchis viverrini-induced cholangiocarcinoma in tissue and plasma, BMC Cancer, 15, 309, 10.1186/s12885-015-1270-5
Tan, 2014, Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: Description of miRNA profiles at baseline, PLoS ONE, 9, e86856, 10.1371/journal.pone.0086856
Ninomiya, 2013, Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505–3p and miR197–3p as novel biomarkers, PLoS ONE, 8, e66086, 10.1371/journal.pone.0066086
Qin, 2013, Analysis of altered microRNA expression profiles in peripheral blood mononuclear cells from patients with primary biliary cirrhosis, J. Gastroenterol. Hepatol., 28, 543, 10.1111/jgh.12040
Tan, 2014, Serum microRNAs as potential biomarkers of primary biliary cirrhosis, PLoS ONE, 9, e111424, 10.1371/journal.pone.0111424