Mibefradil alters intracellular calcium concentration by activation of phospholipase C and IP3 receptor function

Springer Science and Business Media LLC - Tập 2 - Trang 1-13 - 2021
Guilherme H. Souza Bomfim1, Erna Mitaishvili1, Talita Ferreira Aguiar2, Rodrigo S. Lacruz1
1Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
2Department of Urology, New York University School of Medicine, New York, USA

Tóm tắt

Mibefradil is a tetralol derivative originally developed as an antagonist of T-type voltage-gated calcium (Ca2+) channels to treat hypertension when used at nanomolar dosage. More recently, its therapeutic application in hypertension has declined and has been instead repurposed as a treatment of cancer cell proliferation and solid tumor growth. Beyond its function as a Cav blocker, the micromolar concentration of mibefradil can stimulate a rise in [Ca2+]cyt although the mechanism is poorly known. The chanzyme TRPM7 (transient receptor potential melastanin 7), the release of intracellular Ca2+ pools, and Ca2+ influx by ORAI channels have been associated with the increase in [Ca2+]cyt triggered by mibefradil. This study aims to investigate the cellular targets and pathways associated with mibefradil’s effect on [Ca2+]cyt. To address these questions, we monitored changes in [Ca2+]cyt in the specialized mouse epithelial cells (LS8 and ALC) and the widely used HEK-293 cells by stimulating these cells with mibefradil (0.1 μM to 100 μM). We show that mibefradil elicits an increase in [Ca2+]cyt at concentrations above 10 μM (IC50 around 50 μM) and a fast Ca2+ increase capacity at 100 μM. We found that inhibiting IP3 receptors, depleting the ER-Ca2+ stores, or blocking phospholipase C (PLC), significantly decreased the capacity of mibefradil to elevate [Ca2+]cyt. Moreover, the transient application of 100 μM mibefradil triggered Ca2+ influx by store-operated Ca2+ entry (SOCE) mediated by the ORAI channels. Our findings reveal that IP3R and PLC are potential new targets of mibefradil offering novel insights into the effects of this drug.

Tài liệu tham khảo

Heady TN, Gomora JC, Macdonald TL, Perez-Reyes E. Molecular pharmacology of T-type Ca2+ channels. Jpn J Pharmacol. 2001;85(4):339–50. https://doi.org/10.1254/jjp.85.339. Strege PR, Bernard CE, Ou Y, Gibbons SJ, Farrugia G. Effect of mibefradil on sodium and calcium currents. Am J Physiol Gastrointest Liver Physiol. 2005;289(2):G249–53. https://doi.org/10.1152/ajpgi.00022.2005. Gómez-Lagunas F, Carrillo E, Pardo LA, Stühmer W. Gating modulation of the tumor-related Kv10.1 channel by Mibefradil. J Cell Physiol. 2017;232(8):2019–32. https://doi.org/10.1002/jcp.25448. Perez-Reyes E, Van Deusen AL, Vitko I. Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs. J Pharmacol Exp Ther. 2009;328(2):621–7. https://doi.org/10.1124/jpet.108.145672. Wiltshire HR, Sutton BM, Heeps G, Betty AM, Angus DW, Harris SR, et al. Metabolism of the calcium antagonist, mibefradil (POSICOR, Ro 40-5967). Part III. Comparative pharmacokinetics of mibefradil and its major metabolites in rat, marmoset, cynomolgus monkey and man. Xenobiotica. 1997;27(6):557–71. https://doi.org/10.1080/004982597240343. Holdhoff M, Ye X, Supko JG, Nabors LB, Desai AS, Walbert T, et al. Timed sequential therapy of the selective T-type calcium channel blocker mibefradil and temozolomide in patients with recurrent high-grade gliomas. Neuro-Oncology. 2017;19(6):845–52. https://doi.org/10.1093/neuonc/nox020. Nam G. T-type calcium channel blockers: a patent review (2012-2018). Expert Opin Ther Pat. 2018;28(12):883–901. https://doi.org/10.1080/13543776.2018.1541982. Barceló C, Sisó P, Maiques O, de la Rosa I, Martí RM, Macià A. T-Type Calcium Channels: A Potential Novel Target in Melanoma. Cancers (Basel). 2020;12(2). DOI: https://doi.org/10.3390/cancers12020391 Lijnen P, Fagard R, Petrov V. Mibefradil-induced inhibition of proliferation of human peripheral blood mononuclear cells. J Cardiovasc Pharmacol. 1999;33(4):595–604. https://doi.org/10.1097/00005344-199904000-00012. Schmitt R, Kleinbloesem CH, Belz GG, Schroeter V, Feifel U, Pozenel H, et al. Hemodynamic and humoral effects of the novel calcium antagonist Ro 40-5967 in patients with hypertension. Clin Pharmacol Ther. 1992;52(3):314–23. https://doi.org/10.1038/clpt.1992.147. Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 2001;20(24):7033–40. https://doi.org/10.1093/emboj/20.24.7033. Hirooka K, Bertolesi GE, Kelly ME, Denovan-Wright EM, Sun X, Hamid J, et al. T-type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J Neurophysiol. 2002;88(1):196–205. https://doi.org/10.1152/jn.2002.88.1.196. Rodrigues AL, Brescia M, Koschinski A, Moreira TH, Cameron RT, Baillie G, et al. Increase in Ca (2+) current by sustained cAMP levels enhances proliferation rate in GH3 cells. Life Sci. 2018;192:144–50. https://doi.org/10.1016/j.lfs.2017.11.040. Kania E, Pająk B, Orzechowski A. Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int. 2015;2015:352794. https://doi.org/10.1155/2015/352794. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer. 2014;14(9):581–97. https://doi.org/10.1038/nrc3800. Das A, Pushparaj C, Herreros J, Nager M, Vilella R, Portero M, et al. T-type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells. Pigment Cell Melanoma Res. 2013;26(6):874–85. https://doi.org/10.1111/pcmr.12155. Bertolesi GE, Shi C, Elbaum L, Jollimore C, Rozenberg G, Barnes S, et al. The Ca (2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol Pharmacol. 2002;62(2):210–9. https://doi.org/10.1124/mol.62.2.210. Chávez JC, De la Vega-Beltrán JL, José O, Torres P, Nishigaki T, Treviño CL, et al. Acrosomal alkalization triggers Ca (2+) release and acrosome reaction in mammalian spermatozoa. J Cell Physiol. 2018;233(6):4735–47. https://doi.org/10.1002/jcp.26262. Eberhard M, Miyagawa K, Hermsmeyer K, Erne P. Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets. Naunyn Schmiedeberg's Arch Pharmacol. 1995;353(1):94–101. https://doi.org/10.1007/BF00168921. Schäfer S, Ferioli S, Hofmann T, Zierler S, Gudermann T, Chubanov V. Mibefradil represents a new class of benzimidazole TRPM7 channel agonists. Pflugers Arch. 2016;468(4):623–34. https://doi.org/10.1007/s00424-015-1772-7. Bayguinov O, Ward SM, Kenyon JL, Sanders KM. Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. Am J Physiol Cell Physiol. 2007;293(5):C1645–59. https://doi.org/10.1152/ajpcell.00165.2007. Nakamura Y, Fukami K. Regulation and physiological functions of mammalian phospholipase C. J Biochem. 2017;161(4):315–21. https://doi.org/10.1093/jb/mvw094. Gresset A, Sondek J, Harden TK. The phospholipase C isozymes and their regulation. Subcell Biochem. 2012;58:61–94. https://doi.org/10.1007/978-94-007-3012-0_3. Yeung PS, Yamashita M, Prakriya M. Molecular basis of allosteric Orai1 channel activation by STIM1. J Physiol. 2020;598(9):1707–23. https://doi.org/10.1113/JP276550. Li P, Rubaiy HN, Chen GL, Hallett T, Zaibi N, Zeng B, et al. Mibefradil, a T-type Ca (2+) channel blocker also blocks Orai channels by action at the extracellular surface. Br J Pharmacol. 2019;176(19):3845–56. https://doi.org/10.1111/bph.14788. Johnson MT, Gudlur A, Zhang X, Xin P, Emrich SM, Yoast RE, et al. L-type Ca (2+) channel blockers promote vascular remodeling through activation of STIM proteins. Proc Natl Acad Sci U S A. 2020;117(29):17369–80. https://doi.org/10.1073/pnas.2007598117. Nakata A, Kameda T, Nagai H, Ikegami K, Duan Y, Terada K, et al. Establishment and characterization of a spontaneously immortalized mouse ameloblast-lineage cell line. Biochem Biophys Res Commun. 2003;308(4):834–9. https://doi.org/10.1016/s0006-291x(03)01467-0. Souza Bomfim GH, Costiniti V, Li Y, Idaghdour Y, Lacruz RS. TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium. 2020;87:102187. https://doi.org/10.1016/j.ceca.2020.102187. Chubanov V, Mederos y Schnitzler M, Meißner M, Schäfer S, Abstiens K, Hofmann T, et al. Natural and synthetic modulators of SK (K (ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. Br J Pharmacol 2012;166(4):1357–1376. DOI: https://doi.org/10.1111/j.1476-5381.2012.01855.x. Ozaki H, Hori M, Kim YS, Kwon SC, Ahn DS, Nakazawa H, et al. Inhibitory mechanism of xestospongin-C on contraction and ion channels in the intestinal smooth muscle. Br J Pharmacol. 2002;137(8):1207–12. https://doi.org/10.1038/sj.bjp.0704988. Dadsetan S, Zakharova L, Molinski TF, Fomina AF. Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation. J Biol Chem. 2008;283(18):12512–9. https://doi.org/10.1074/jbc.M709330200. Parys JB, Bultynck G. Calcium signaling in health, disease and therapy. Biochim Biophys Acta Mol Cell Res. 2018;1865(11 Pt B):1657–9. https://doi.org/10.1016/j.bbamcr.2018.08.019. Islam MS. Calcium signaling: from basic to bedside. Adv Exp Med Biol 2020;1131:1–6. DOI: https://doi.org/10.1007/978-3-030-12457-1_1. Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens (Greenwich). 2011;13(9):687–9. https://doi.org/10.1111/j.1751-7176.2011.00513.x. Po AL, Zhang WY. What lessons can be learnt from withdrawal of mibefradil from the market? Lancet. 1998;351(9119):1829–30. https://doi.org/10.1016/s0140-6736(05)78800-0. Mullins ME, Horowitz BZ, Linden DH, Smith GW, Norton RL, Stump J. Life-threatening interaction of mibefradil and beta-blockers with dihydropyridine calcium channel blockers. Jama. 1998;280(2):157–8. https://doi.org/10.1001/jama.280.2.157. Krouse AJ, Gray L, Macdonald T, McCray J. Repurposing and rescuing of Mibefradil, an antihypertensive, for Cancer: a case study. Assay Drug Dev Technol. 2015;13(10):650–3. https://doi.org/10.1089/adt.2015.29014.ajkdrrr. Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, et al. The role of voltage gated T-type Ca2+ channel isoforms in mediating "capacitative" Ca2+ entry in cancer cells. Cell Calcium. 2004;36(6):489–97. https://doi.org/10.1016/j.ceca.2004.05.001. Gray LS, Schiff D, Macdonald TL. A model for the regulation of T-type Ca (2+) channels in proliferation: roles in stem cells and cancer. Expert Rev Anticancer Ther. 2013;13(5):589–95. https://doi.org/10.1586/era.13.34. Dziegielewska B, Casarez EV, Yang WZ, Gray LS, Dziegielewski J, Slack-Davis JK. T-type Ca2+ channel inhibition sensitizes ovarian Cancer to carboplatin. Mol Cancer Ther. 2016;15(3):460–70. https://doi.org/10.1158/1535-7163.MCT-15-0456. Maiques O, Barceló C, Panosa A, Pijuan J, Orgaz JL, Rodriguez-Hernandez I, et al. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res. 2018;31(4):484–95. https://doi.org/10.1111/pcmr.12690. Maiques O, Macià A, Moreno S, Barceló C, Santacana M, Vea A, et al. Immunohistochemical analysis of T-type calcium channels in acquired melanocytic naevi and melanoma. Br J Dermatol. 2017;176(5):1247–58. https://doi.org/10.1111/bjd.15121. Chubanov V, Ferioli S, Gudermann T. Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium. 2017;67:166–73. https://doi.org/10.1016/j.ceca.2017.03.004. Murtazina DA, Chung D, Ulloa A, Bryan E, Galan HL, Sanborn BM. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells. Biol Reprod. 2011;85(2):315–26. https://doi.org/10.1095/biolreprod.111.091082. Sarkar J, Simanian EJ, Tuggy SY, Bartlett JD, Snead ML, Sugiyama T, et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol. 2014;5:277. https://doi.org/10.3389/fphys.2014.00277. Yoast RE, Emrich SM, Zhang X, Xin P, Johnson MT, Fike AJ, et al. The native ORAI channel trio underlies the diversity of Ca (2+) signaling events. Nat Commun. 2020;11(1):2444. https://doi.org/10.1038/s41467-020-16232-6. Chi CC, Chou CT, Kuo CC, Hsieh YD, Liang WZ, Tseng LL, et al. Effect of m-3m3FBS on Ca2+ handling and viability in OC2 human oral cancer cells. Acta Physiol Hung. 2012;99(1):74–86. https://doi.org/10.1556/APhysiol.99.2012.1.8. Use of U-73122 as an Inhibitor of Phospholipase C-Dependent Processes. Neuroprotocols. 1993;3(2):125–33. DOI: https://doi.org/10.1006/ncmn.1993.1046