Metric-like spaces, partial metric spaces and fixed points

Springer Science and Business Media LLC - Tập 2012 Số 1 - 2012
A. Amini-Harandi1
1Department of Mathematics, University of Shahrekord, Shahrekord 88186-34141, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Matthews SG: Partial metric topology. Ann. New York Acad. Sci. 728. Proc. 8th Summer Conference on General Topology and Applications 1994, 183–197.

Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157(18):2778–2785. 10.1016/j.topol.2010.08.017

Bukatin M, Kopperman R, Matthews S, Pajoohesh H: Partial metric spaces. Am. Math. Mon. 2009, 116: 708–718. 10.4169/193009709X460831

Rabarison, AF: In: H-PA Knzi (ed.): Partial Metrics. African Institute for Mathematical Sciences. Supervised (2007)

Oltra S, Valero O: Banach’s fixed theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36: 17–26.

Karapinar E, Erhan IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013

Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298

Ilić D, Pavlović V, Rakočević V: Some new extensions of Banach’s contraction principle to partial metric space. Appl. Math. Lett. 2011, 24: 1326–1330. 10.1016/j.aml.2011.02.025

Ćirić L, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218(6):2398–2406. 10.1016/j.amc.2011.07.005

Saadati R, Vaezpour S, Ćirić L: Generalized distance and some common fixed point theorems. J. Comput. Anal. Appl. 2010, 12(1-A):157–162.

Ćirić L, Samet B, Cakic N, Damjanovic B: Generalized ( ψ , ω ) -weak nonlinear contractions in ordered K -metric spaces. Comput. Math. Appl. 2011, 62: 3305–3316. 10.1016/j.camwa.2011.07.061

Ćirić L, Hussain N, Cakić N: Common fixed points for Ćirić type- f -weak contraction with application. Publ. Math. (Debr.) 2010, 76(1–2):31–49.

Ćirić L: A generalization of Banach contraction principle. Proc. Am. Math. Soc. 2010, 45: 267–273.

Rakotch E: A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13: 459–465. 10.1090/S0002-9939-1962-0148046-1

Kirk WA, Khamsi MA: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York; 2011.