Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lý thuyết điểm cố định trong không gian metric cho các ánh xạ không mở rộng được xác định trên các tập không bị chặn
Tóm tắt
Trong lý thuyết điểm cố định metric, việc giảm các câu hỏi về điểm cố định cho các ánh xạ được xác định trên các tập không bị chặn về trường hợp bị chặn là một thực hành tiêu chuẩn. Nhiều kết quả này được trình bày trong khuôn khổ không gian Banach và liên quan đến các quỹ đạo bị chặn. Chúng tôi xem xét các kết quả này trong một bối cảnh metric rộng hơn ở đây.
Từ khóa
#Điểm cố định #ánh xạ không mở rộng #không gian metric #không gian Banach #quỹ đạo.Tài liệu tham khảo
Ray WO: The fixed point property and unbounded sets in Hilbert space. Trans. Am. Math. Soc. 1980, 258(2):531–537. 10.1090/S0002-9947-1980-0558189-1
Domínguez Benavides T:The failure of the fixed point property for unbounded sets in c 0 . Proc. Am. Math. Soc. 2012, 140: 645–650. 10.1090/S0002-9939-2011-10938-9
Kirk WA: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 1965, 72: 1004–1006. 10.2307/2313345
Kaewcharoen A, Kirk WA: Nonexpansive mappings defined on unbounded domains. Fixed Point Theory Appl. 2006., 2006: Article ID 82080
Belluce LP, Kirk WA: Fixed-point theorems for families of contraction mappings. Pac. J. Math. 1966, 18: 213–217. 10.2140/pjm.1966.18.213
Kohlenbach U: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 2005, 357(1):89–128. (electronic) 10.1090/S0002-9947-04-03515-9
Takahashi W: A convexity in metric space and nonexpansive mappings. I. Kodai Math. Semin. Rep. 1970, 22: 142–149. 10.2996/kmj/1138846111
Goebel K, Kirk WA: Iteration processes for nonexpansive mappings. Contemp. Math. 21. In Topological Methods in Nonlinear Functional Analysis. Am. Math. Soc., Providence; 1983:115–123. (Toronto, Ont., 1982)
Bridson M, Haefliger A Grundlehren der Mathematischen Wissenschaften 319. In Metric Spaces of Non-positive Curvature. Springer, Berlin; 1999. (Fundamental Principles of Mathematical Sciences)
Papadopoulos A IRMA Lectures in Mathematics and Theoretical Physics 6. In Metric Spaces, Convexity and Nonpositive Curvature. Eur. Math. Soc., Zürich; 2005.
Ariza-Ruiz, D, Leuştean, L, Lopez-Acedo, G: Firmly nonexpansive mappings in classes of geodesic spaces (2012).arXiv:1203.1432v3 [math.FA]
Alghamdi MA, Kirk WA, Shahzad N: Remarks on convex combinations in geodesic spaces. J. Nonlinear Convex Anal. 2014, 15: 49–59.
Alghamdi MA, Kirk WA, Shahzad N: Locally nonexpansive mappings in geodesic and length spaces. Topol. Appl. 2014, 173: 59–73.
Kirk WA: Geodesic geometry and fixed point theory. Colecc. Abierta 64. In Seminar of Mathematical Analysis. Univ. Sevilla Secr. Publ., Seville; 2003:195–225. (Malaga/Seville, 2002/2003)
Kirk WA: Geodesic geometry and fixed point theory. II. In International Conference on Fixed Point Theory and Applications. Yokohama Publ., Yokohama; 2004:113–142.
Shahzad N:Invariant approximations in CAT(0) spaces. Nonlinear Anal. 2009, 70: 4338–4340. 10.1016/j.na.2008.10.002
Shahzad N:Fixed point results for multimaps in CAT(0) spaces. Topol. Appl. 2009, 156: 997–1001. 10.1016/j.topol.2008.11.016
Shahzad N, Markin J:Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces. J. Math. Anal. Appl. 2008, 337: 1457–1464. 10.1016/j.jmaa.2007.04.041
Kirk WA: The fixed point property and mappings which are eventually nonexpansive. Lecture Notes in Pure and Appl. Math. 178. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Dekker, New York; 1996:141–147.
Bruck RE: A common fixed point theorem for a commuting family of nonexpansive mappings. Pac. J. Math. 1974, 53: 59–71. 10.2140/pjm.1974.53.59
Kirk, WA, Shahzad, N: Uniformly Lipschitzian mappings in ℝ-trees (submitted)
Aksoy AG, Khamsi MA: Fixed points of uniformly Lipschitzian mappings in metric trees. Sci. Math. Jpn. 2007, 65: 31–41.
Bula I: Some generalizations of W.A. Kirk’s fixed point theorems. Latv. Univ. Zināt. Raksti 595. In Mathematics. Latv. Univ., Riga; 1994:159–166.
Kirk WA: Krasnoselskii’s iteration process in hyperbolic space. Numer. Funct. Anal. Optim. 1981/82, 4: 371–381.
Djebali S, Hammache K: Fixed point theorems for nonexpansive maps in Banach spaces. Nonlinear Anal. 2010, 73: 3440–3449. 10.1016/j.na.2010.07.032
Suzuki T: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340(2):1088–1095. (English summary) 10.1016/j.jmaa.2007.09.023
Busemann H: The Geometry of Geodesics. Academic Press, New York; 1955.
Kirk WA: Isometries in G -spaces. Duke Math. J. 1964, 31: 539–541. 10.1215/S0012-7094-64-03153-9
Kirk WA: On conditions under which local isometries are motions. Colloq. Math. 1971, 22: 229–232.
Całka A: On conditions under which isometries have bounded orbits. Colloq. Math. 1984, 48(2):219–227.