Các methyltransferase trong bệnh sinh của các loại ung thư keratinocyte

Cancers - Tập 13 Số 14 - Trang 3402
Eun Kyung Ko1, Brian C. Capell2,1,3,4
1Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
2Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
3Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
4Penn Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA

Tóm tắt

Chứng cứ gần đây cho thấy rằng sự rối loạn biểu hiện gen do những thay đổi trong DNA, RNA và methyl hóa histone có thể là những yếu tố quan trọng góp phần vào bệnh sinh của các loại ung thư keratinocyte (KC), bao gồm ung thư biểu mô tế bào đáy (BCC) và ung thư biểu mô tế bào vảy da (cSCC), mà tổng số ca mắc của chúng vượt qua tất cả các loại ung thư khác ở người. Trong khi rõ ràng rằng các yếu tố điều biến methyl hóa thường bị rối loạn trong KC, những thay đổi phân tử và cơ chế cơ bản chỉ mới bắt đầu được hiểu rõ. Thú vị thay, gần đây đã xuất hiện bằng chứng cho thấy có sự tương tác sâu rộng giữa các quá trình methyl hóa khác nhau này. Ở đây, chúng tôi tóm tắt và tổng hợp những phát hiện mới nhất trong lĩnh vực này và làm nổi bật cách mà những khám phá này có thể mở ra những phương pháp điều trị mới cho những căn bệnh ung thư phổ biến này.

Từ khóa


Tài liệu tham khảo

Cavalli, 2019, Advances in epigenetics link genetics to the environment and disease, Nature, 571, 489, 10.1038/s41586-019-1411-0

Michalak, 2019, The roles of DNA, RNA and histone methylation in ageing and cancer, Nat. Rev. Mol. Cell Biol., 20, 573, 10.1038/s41580-019-0143-1

Singh, 2017, Towards therapeutic advances in melanoma management: An overview, Life Sci., 174, 50, 10.1016/j.lfs.2017.02.011

Penta, 2017, Epigenetics of skin cancer: Interventions by selected bioactive phytochemicals, Photodermatol. Photoimmunol. Photomed., 34, 42, 10.1111/phpp.12353

Ratushny, 2012, From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma, J. Clin. Investig., 122, 464, 10.1172/JCI57415

Nikolouzakis, T.K., Falzone, L., Lasithiotakis, K., Krüger-Krasagakis, S., Kalogeraki, A., Sifaki, M., Spandidos, D.A., Chrysos, E., Tsatsakis, A., and Tsiaoussis, J. (2020). Current and Future Trends in Molecular Biomarkers for Diagnostic, Prognostic, and Predictive Purposes in Non-Melanoma Skin Cancer. J. Clin. Med., 9.

Sang, 2019, Current insights into the epigenetic mechanisms of skin cancer, Dermatol. Ther., 32, e12964, 10.1111/dth.12964

Que, 2018, Cutaneous squamous cell carcinoma, J. Am. Acad. Dermatol., 78, 237, 10.1016/j.jaad.2017.08.059

Nehal, 2018, Update on Keratinocyte Carcinomas, N. Engl. J. Med., 379, 363, 10.1056/NEJMra1708701

Maturo, 2020, Coding and noncoding somatic mutations in candidate genes in basal cell carcinoma, Sci. Rep., 10, 1, 10.1038/s41598-020-65057-2

Cerami, 2012, The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data, Cancer Discov., 2, 401, 10.1158/2159-8290.CD-12-0095

Gao, 2013, Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal, Sci. Signal., 6, pl1, 10.1126/scisignal.2004088

Tate, 2018, COSMIC: The Catalogue of Somatic Mutations in Cancer, Nucleic Acids Res., 47, D941, 10.1093/nar/gky1015

Li, 1998, Induction of Squamous Cell Carcinoma in p53-Deficient Mice after Ultraviolet Irradiation, J. Investig. Derm., 110, 72, 10.1046/j.1523-1747.1998.00090.x

Berg, 1996, Early p53 alterations in mouse skin carcinogenesis by UVB radiation: Immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells, Proc. Natl. Acad. Sci. USA, 93, 274, 10.1073/pnas.93.1.274

South, 2014, NOTCH1 Mutations Occur Early during Cutaneous Squamous Cell Carcinogenesis, J. Investig. Dermatol., 134, 2630, 10.1038/jid.2014.154

Fowler, 2021, Selection of Oncogenic Mutant Clones in Normal Human Skin Varies with Body Site, Cancer Discov., 11, 340, 10.1158/2159-8290.CD-20-1092

Yilmaz, 2017, Differential mutation frequencies in metastatic cutaneous squamous cell carcinomas versus primary tumors, Cancer, 123, 1184, 10.1002/cncr.30459

Pickering, 2014, Mutational Landscape of Aggressive Cutaneous Squamous Cell Carcinoma, Clin. Cancer Res., 20, 6582, 10.1158/1078-0432.CCR-14-1768

Kumar, 2018, Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond, Front. Genet., 9, 640, 10.3389/fgene.2018.00640

Zhang, 2017, DNA methyltransferases and their roles in tumorigenesis, Biomark. Res., 5, 1, 10.1186/s40364-017-0081-z

Jeong, 2009, Selective Anchoring of DNA Methyltransferases 3A and 3B to Nucleosomes Containing Methylated DNA, Mol. Cell. Biol., 29, 5366, 10.1128/MCB.00484-09

Okano, 1999, DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development, Cell, 99, 247, 10.1016/S0092-8674(00)81656-6

Uysal, 2015, Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos, Biochimie, 116, 103, 10.1016/j.biochi.2015.06.019

Sen, 2010, DNMT1 maintains progenitor function in self-renewing somatic tissue, Nat. Cell Biol., 463, 563

Li, 2012, Progressive Alopecia Reveals Decreasing Stem Cell Activation Probability during Aging of Mice with Epidermal Deletion of DNA Methyltransferase 1, J. Investig. Dermatol., 132, 2681, 10.1038/jid.2012.206

Rinaldi, 2016, Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis, Cell Stem Cell, 19, 491, 10.1016/j.stem.2016.06.020

Rinaldi, 2017, Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ, eLife, 6, e21697, 10.7554/eLife.21697

Guo, 2011, Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain, Cell, 145, 423, 10.1016/j.cell.2011.03.022

He, 2011, Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA, Science, 333, 1303, 10.1126/science.1210944

An, 2017, TET family dioxygenases and DNA demethylation in stem cells and cancers, Exp. Mol. Med., 49, e323, 10.1038/emm.2017.5

Fritz, 2010, Cytidine deaminases: AIDing DNA demethylation?, Genes Dev., 24, 2107, 10.1101/gad.1963010

Kohli, 2013, TET enzymes, TDG and the dynamics of DNA demethylation, Nat. Cell Biol., 502, 472

Kunz, 2011, Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability, Nat. Cell Biol., 470, 419

Bormann, 2018, Methylation profiling identifies two subclasses of squamous cell carcinoma related to distinct cells of origin, Nat. Commun., 9, 1

Hervás-Marín, D., Higgins, F., Sanmartín, O., López-Guerrero, J.A., Bañó, M.C., Igual, J.C., Quilis, I., and Sandoval, J. (2019). Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma. PLoS ONE, 14.

Li, 2020, UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes, EBioMedicine, 57, 102835, 10.1016/j.ebiom.2020.102835

Liang, 2015, Secreted frizzled-related protein promotors are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis, BMC Cancer, 15, 1, 10.1186/s12885-015-1650-x

Brown, 2004, p16INK4a and p14ARF Tumor Suppressor Genes Are Commonly Inactivated in Cutaneous Squamous Cell Carcinoma, J. Investig. Dermatol., 122, 1284, 10.1111/j.0022-202X.2004.22501.x

Chiles, 2003, E-Cadherin Promoter Hypermethylation in Preneoplastic and Neoplastic Skin Lesions, Mod. Pathol., 16, 1014, 10.1097/01.MP.0000089779.35435.9D

Murao, 2006, Epigenetic abnormalities in cutaneous squamous cell carcinomas: Frequent inactivation of the RB1/p16 and p53 pathways, Br. J. Dermatol., 155, 999, 10.1111/j.1365-2133.2006.07487.x

Takeuchi, 2002, Loss of T-Cadherin (CDH13, H-Cadherin) Expression in Cutaneous Squamous Cell Carcinoma, Lab. Investig., 82, 1023, 10.1097/01.LAB.0000025391.35798.F1

Venza, 2009, FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma, Br. J. Dermatol., 162, 1093, 10.1111/j.1365-2133.2009.09560.x

Meier, K., Drexler, S.K., Eberle, F.C., Lefort, K., and Yazdi, A.S. (2016). Silencing of ASC in Cutaneous Squamous Cell Carcinoma. PLoS ONE, 11.

Nobeyama, Y., Watanabe, Y., and Nakagawa, H. (2017). Silencing of G0/G1 switch gene 2 in cutaneous squamous cell carcinoma. PLoS ONE, 12.

Li, 2015, Aberrant Methylation Changes Detected in Cutaneous Squamous Cell Carcinoma of Immunocompetent Individuals, Cell Biophys., 72, 599, 10.1007/s12013-014-0507-2

Lang, C.M.R., Chan, C.K., Veltri, A., and Lien, W.-H. (2019). Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers, 11.

Darr, 2015, Epigenetic alterations in metastatic cutaneous carcinoma, Head Neck, 37, 994, 10.1002/hed.23701

Haider, 2006, Genomic Analysis Defines a Cancer-Specific Gene Expression Signature for Human Squamous Cell Carcinoma and Distinguishes Malignant Hyperproliferation from Benign Hyperplasia, J. Investig. Dermatol., 126, 869, 10.1038/sj.jid.5700157

Yooyongsatit, 2015, Patterns and functional roles of LINE-1 and Alu methylation in the keratinocyte from patients with psoriasis vulgaris, J. Hum. Genet., 60, 349, 10.1038/jhg.2015.33

Wei, 2003, Identification of Dss1 as a 12-O-Tetradecanoylphorbol-13-acetate-responsive Gene Expressed in Keratinocyte Progenitor Cells, with Possible Involvement in Early Skin Tumorigenesis, J. Biol. Chem., 278, 1758, 10.1074/jbc.M206328200

Venza, 2017, DSS1 promoter hypomethylation and overexpression predict poor prognosis in melanoma and squamous cell carcinoma patients, Hum. Pathol., 60, 137, 10.1016/j.humpath.2016.10.018

Brinkhuizen, T., Hurk, K.V.D., Winnepenninckx, V.J.L., De Hoon, J.P., Van Marion, A.M., Veeck, J., Van Engeland, M., and van Steensel, M. (2012). Epigenetic Changes in Basal Cell Carcinoma Affect SHH and WNT Signaling Components. PLoS ONE, 7.

Stamatelli, 2014, Epigenetic alterations in sporadic basal cell carcinomas, Arch. Dermatol. Res., 306, 561, 10.1007/s00403-014-1454-x

Cutter, 2015, A brief review of nucleosome structure, FEBS Lett., 589, 2914, 10.1016/j.febslet.2015.05.016

McGinty, 2015, Nucleosome Structure and Function, Chem. Rev., 115, 2255, 10.1021/cr500373h

Boopathi, 2017, Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1, Mol. Cell, 66, 384, 10.1016/j.molcel.2017.04.012

Kalashnikova, 2016, Linker histone H1 and protein–protein interactions, Biochim. Biophys. Acta BBA Gene Regul. Mech., 1859, 455, 10.1016/j.bbagrm.2015.10.004

Black, 2012, Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact, Mol. Cell, 48, 491, 10.1016/j.molcel.2012.11.006

Hyun, 2017, Writing, erasing and reading histone lysine methylations, Exp. Mol. Med., 49, e324, 10.1038/emm.2017.11

Weirich, 2015, Somatic cancer mutations in the MLL3-SET domain alter the catalytic properties of the enzyme, Clin. Epigenet., 7, 36, 10.1186/s13148-015-0075-3

Lee, 2008, Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis, Proc. Natl. Acad. Sci. USA, 105, 19229, 10.1073/pnas.0810100105

Wu, 2013, Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9, Cell Rep., 5, 13, 10.1016/j.celrep.2013.08.035

Fritsch, 2010, A Subset of the Histone H3 Lysine 9 Methyltransferases Suv39h1, G9a, GLP, and SETDB1 Participate in a Multimeric Complex, Mol. Cell, 37, 46, 10.1016/j.molcel.2009.12.017

Husmann, 2019, Histone lysine methyltransferases in biology and disease, Nat. Struct. Mol. Biol., 26, 880, 10.1038/s41594-019-0298-7

Godfrey, 2019, DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation, Nat. Commun., 10, 1, 10.1038/s41467-019-10844-3

Wu, 2013, Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2, FEBS Lett., 587, 3859, 10.1016/j.febslet.2013.10.020

Yoo, 2012, EZH2 Methyltransferase and H3K27 Methylation in Breast Cancer, Int. J. Biol. Sci., 8, 59, 10.7150/ijbs.8.59

Li, 2015, Genomic Analysis of Metastatic Cutaneous Squamous Cell Carcinoma, Clin. Cancer Res., 21, 1447, 10.1158/1078-0432.CCR-14-1773

Martincorena, 2015, High burden and pervasive positive selection of somatic mutations in normal human skin, Science, 348, 880, 10.1126/science.aaa6806

Soares, 2017, Master regulatory role of p63 in epidermal development and disease, Cell. Mol. Life Sci., 75, 1179, 10.1007/s00018-017-2701-z

Shiao, 2018, KMT2D regulates p63 target enhancers to coordinate epithelial homeostasis, Genes Dev., 32, 181, 10.1101/gad.306241.117

Egolf, S., Zou, J., Anderson, A., Aubert, Y., Ge, K., Seykora, J.T., and Capell, B.C. (2021). MLL4 Is a Critical Mediator of Differentiation and Ferroptosis in the Epidermis. bioRxiv.

Egolf, 2019, LSD1 Inhibition Promotes Epithelial Differentiation through Derepression of Fate-Determining Transcription Factors, Cell Rep., 28, 1981, 10.1016/j.celrep.2019.07.058

Yan, K.-S., Lin, C.-Y., Liao, T.-W., Peng, C.-M., Lee, S.-C., Liu, Y.-J., Chan, W.P., and Chou, R.-H. (2017). EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe?. Int. J. Mol. Sci., 18.

Breuer, 2004, Increased Expression of the EZH2 Polycomb Group Gene in BMI-1-Positive Neoplastic Cells during Bronchial Carcinogenesis, Neoplasia, 6, 736, 10.1593/neo.04160

Simon, 2008, Roles of the EZH2 histone methyltransferase in cancer epigenetics, Mutat. Res. Mol. Mech. Mutagen., 647, 21, 10.1016/j.mrfmmm.2008.07.010

Kim, 2016, Targeting EZH2 in cancer, Nat. Med., 22, 128, 10.1038/nm.4036

Yamagishi, 2017, Targeting EZH2 in cancer therapy, Curr. Opin. Oncol., 29, 375, 10.1097/CCO.0000000000000390

Zhao, 2014, Role of EZH2 in oral squamous cell carcinoma carcinogenesis, Gene, 537, 197, 10.1016/j.gene.2014.01.006

He, 2009, High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy, Int. J. Cancer, 127, 138, 10.1002/ijc.25031

Liu, 2015, Aberrant overexpression of EZH2 and H3K27me3 serves as poor prognostic biomarker for esophageal squamous cell carcinoma patients, Biomarkers, 21, 80, 10.3109/1354750X.2015.1118537

Kidani, 2009, High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas, Oral Oncol., 45, 39, 10.1016/j.oraloncology.2008.03.016

Cao, 2011, EZH2 Promotes Malignant Phenotypes and Is a Predictor of Oral Cancer Development in Patients with Oral Leukoplakia, Cancer Prev. Res., 4, 1816, 10.1158/1940-6207.CAPR-11-0130

Izzo, 1998, Dysregulated cyclin D1 expression early in head and neck tumorigenesis: In vivo evidence for an association with subsequent gene amplification, Oncogene, 17, 2313, 10.1038/sj.onc.1202153

Toll, 2018, The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma, Carcinogenesis, 39, 503, 10.1093/carcin/bgy016

Chen, 2020, Histone methyltransferase SETD2: A potential tumor suppressor in solid cancers, J. Cancer, 11, 3349, 10.7150/jca.38391

Fahey, 2017, SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation, Cold Spring Harb. Perspect. Med., 7, a026468, 10.1101/cshperspect.a026468

Mar, 2017, SETD2 Alterations Impair DNA Damage Recognition and Lead to Resistance to Chemotherapy in Leuke-mia, Blood, 130, 2631, 10.1182/blood-2017-03-775569

Bhattacharya, 2021, The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain, Nat. Commun., 12, 1, 10.1038/s41467-021-21663-w

Seervai, 2020, The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase, Sci. Adv., 6, eabb7854, 10.1126/sciadv.abb7854

Park, 2016, Dual Chromatin and Cytoskeletal Remodeling by SETD2, Cell, 166, 950, 10.1016/j.cell.2016.07.005

Xie, 2008, Histone methyltransferase protein SETD2 interacts with p53 and selectively regulates its downstream genes, Cell. Signal., 20, 1671, 10.1016/j.cellsig.2008.05.012

Rao, 2016, EZH2, Proliferation Rate, and Aggressive Tumor Subtypes in Cutaneous Basal Cell Carcinoma, JAMA Oncol., 2, 962, 10.1001/jamaoncol.2016.0021

Rao, 2018, Epigenetic markers in basal cell carcinoma: Universal themes in oncogenesis and tumor stratification? A short report, Cell. Oncol., 41, 693, 10.1007/s13402-018-0402-8

Zaccara, 2019, Reading, writing and erasing mRNA methylation, Nat. Rev. Mol. Cell Biol., 20, 608, 10.1038/s41580-019-0168-5

Roundtree, 2017, Dynamic RNA Modifications in Gene Expression Regulation, Cell, 169, 1187, 10.1016/j.cell.2017.05.045

Wei, 2021, Chromatin and transcriptional regulation by reversible RNA methylation, Curr. Opin. Cell Biol., 70, 109, 10.1016/j.ceb.2020.11.005

Tzelepis, 2019, RNA-modifying enzymes and their function in a chromatin context, Nat. Struct. Mol. Biol., 26, 858, 10.1038/s41594-019-0312-0

Huang, 2019, Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally, Nat. Cell Biol., 567, 414

Liu, 2020, N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription, Science, 367, 580, 10.1126/science.aay6018

Xiang, 2017, RNA m6A methylation regulates the ultraviolet-induced DNA damage response, Nat. Cell Biol., 543, 573

Zhou, 2019, METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63, Biochem. Biophys. Res. Commun., 515, 310, 10.1016/j.bbrc.2019.05.155

Xi, L., Carroll, T., Matos, I., Luo, J.-D., Polak, L., Pasolli, H.A., Jaffrey, S.R., and Fuchs, E. (2020). m6A RNA methylation impacts fate choices during skin morphogenesis. eLife, 9.

Lee, 2021, N 6-methyladenosine modification of lncRNA Pvt1 governs epidermal stemness, EMBO J., 40, e106276, 10.15252/embj.2020106276

Zhao, 2020, METTL3 Facilitates Oral Squamous Cell Carcinoma Tumorigenesis by Enhancing c-Myc Stability via YTHDF1-Mediated m6A Modification, Mol. Ther. Nucleic Acids, 20, 1, 10.1016/j.omtn.2020.01.033

Liu, 2020, METTL3 Promotes Tumorigenesis and Metastasis through BMI1 m6A Methylation in Oral Squamous Cell Carcinoma, Mol. Ther., 28, 2177, 10.1016/j.ymthe.2020.06.024