Methods for the introduction of bacteria into soil: A review

Biology and Fertility of Soils - Tập 10 - Trang 127-133 - 1990
J. D. van Elsas1, C. E. Heijnen1
1Research Institute Ital, Wageningen, The Netherlands

Tóm tắt

Literature on the use of microbial inoculants to increase crop yields, to control soil-borne plant diseases, or to degrade pollutants has been reviewed. Established inoculant technology based on Rhizobium/peat inoculants has been summarized. Special emphasis has been placed on the use of carrier materials for the delivery of microbial inoculants. Some new developments, e.g., the use of synthetic carriers, have been highlighted. The fact that not only inoculant survival in carrier materials should be studied, but also the ecological consequences of the introduction of bacteria, has been stressed.

Tài liệu tham khảo

Alexander M (1984) Ecology of Rhizobium. In: Alexander M (ed) Biological nitrogen fixation, ecology, technology and physiology. Plenum Press, New York, pp 39–50 Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24 Bashan Y (1986a) Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–1098 Bashan Y (1986b) Enhancement of wheat root colonization and plant development by Azospirillum brasilense Cd. following temporary depression of rhizosphere microflora. Appl Environ Microbiol 51:1067–1071 Bashan Y (1986c) Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens, towards wheat roots in the soil. J Gen Microbiol 132:3407–3414 Bissonnette N, Lalande R (1988) High survivability of cheese whey-grown Rhizobium meliloti cells upon exposure to physical stress. Appl Environ Microbiol 54:183–187 Brierley JA (1985) Use of microorganisms for mining metals. In: Halvorson HO, Pramer D, Rogul M (eds) Engineered, organisms in the environment: Scientific issues. Am Soc Microbiol, Washington DC, pp 141–146 Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197 Brunner W, Sutherland FH, Focht DD (1985) Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J Environ Qual 14:324–328 Burr TJ, Caesar A (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2:1–20 Burton JC (1976) Methods of inoculating seeds and their effect on survival of rhizobia. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London, pp 175–189 Campbell R, Ephgrave YM (1983) Effect of bentonite clay on the growth of Gaeumannomyces graminis var. tritici and its interactions with antagonistic bacteria. J Gen Microbiol 129:771–777 Chao WL, Alexander M (1984) Mineral soils as carriers for Rhizobium inoculants. Appl Environ Microbiol 47:94–97 Cooper R (1959) Bacterial fertilizers in the Soviet Union. Soils Fertil 22:327–333 Date RA (1970) Microbiological problems in the inoculation and nodulation of legumes. Plant and Soil 32:703–725 Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286 Diem HG, Ben Khalifa K, Neyra M, Dommergues YR (1988) Recent advances in the inoculant technology with special emphasis on plant symbiotic microorganisms. In: Leone U, Rialdi G, Vanore R (eds) Proceedings of AISI Workshop on advanced technologies for increased agricultural production. Santa Margharita Ligure, Italy, pp 196–210 Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–781 Dommergues YR, Diem HG, Sougoufara B (1990) Nitrogen fixation in Casuarinaceae: Quantification and improvement through usual approaches including aerial nodulation. In: Proceedings of the Second Cairo International Casuarina Workshop, Cairo, Egypt (in press) Dunigan EP, Bollick PK, Zaunbrecher FC, Hicks PM, Morrison WC (1983) Soybean inoculation in Louisiana. Bull Louisiana Exp Stn 749:3–19 Elegba MS, Rennie RJ (1984) Effect of different inoculant adhesive agents on rhizobial survival, nodulation and nitrogenase (acetylene-reducing) activity of soybean. Can J Soil Sci 64:631–636 Fravel OR, Marois JJ, Lumsden RD, Connick WJ (1985) Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75:774–777 Gaskins MH, Albrecht SL, Hubbell DH (1985) Rhizosphere bacteria and their use to increase plant productivity: A review. Agric Ecosyst Environ 12:99–116 Giddens JE, Dunigan EP, Weaver RW (1982) Legume inoculation in the Southeastern USA. In: Sparer D (ed) Southern Cooperative Series, Bull 283, Univ Georgia, Coll Agric Exp Stn, pp 1–38 Gindrat D (1979) Biocontrol of plant diseases by inoculation of fresh wounds, seeds and soil with antagonists. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic Press, New York, pp 537–551 Golovleva LA, Pertsova RN, Boronin AM, Travkin VM, Kozlovsky SA (1988) Kelthane degradation by genetically engineered Pseudomonas aeruginosa BS827 in a soil ecosystem. Appl Environ Microbiol 54:1587–1590 Harari A, Kigel J, Okon Y (1989) Involvement of IAA in the interaction between Azospirillum brasilense and Panicum miliaceum roots. In: Skinner F, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers Dordrecht, pp 227–234 Hattori T Hattori R (1976) The physical environment in soil microbiology: An attempt to extent principles of microbiology to soil microorganisms. CRC Crit Rev Microbiol 4:423–461 Heijnen CE, Van Elsas JD, Kuikman PJ, Van Veen JA (1988) Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol Biochem 20:483–488 Hemming BC (1986) Microbial-iron interactions in the plant rhizosphere: an overview. J Plant Nutr 9: 505–521 Huber DM, El-Nasshar H, Moore LW, Mathre DE, Wagner JE (1989) Interactions between a peat carrier and bacterial seed treatments evaluated for biological control of the take-all diseases of wheat (Triticum aestivum L.) Biol Fertil Soils 8:166–171 Kapulnik Y, Feldman M, Okon Y, Henis Y (1985) Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat in Israel. Soil Biol Biochem 17:509–515 Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: A mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320 Kotb SI, Angle JS (1986) Survival of blue-green algae in various carrier media. Trop Agric (Trinidad) 63:113–116 Kremer RJ, Peterson HL (1982) Effect of inoculant carrier on survival of Rhizobium on inoculated seed. Soil Sci 134:117–125 Lindow SE, Panopoulos NJ (1988) Field tests of recombinant ice- Pseudomonas syringae for biological frost control in potato. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) The release of genetically-engineered microorganisms. Academic Press, New York, pp 121–138 Lugtenberg B, De Weger L, Wijffelman C (1988) Application of genetically-engineered microorganisms in the environment. In: Fiksel J, Covello VT (eds) Safety assurance for environmental introductions of genetically-engineered organisms. Springer Verlag, Berlin, pp 129–162 Mendez-Castro FA, Alexander M (1983) Method for establishing a bacterial inoculum on corn roots. Appl Environ Microbiol 45:248–254 Michiels K, Vanderleyden J, Van Gool A (1989) Azospirillum-plant root associations: A review. Biol Fertil Soils 8:356–368 Mishustin EN, Naumova AN (1962) Bacterial fertilizers, their effectiveness and mode of action. Microbiologiya 31:543–555 Moffett ML, Giles JE, Wood BA (1983) Survival of Pseudomonas solanacearum biovars 2 and 3 in soil: Effect of moisture and soil type. Soil Biol Biochem 15:587–591 Molin S, Klemm P, Poulsen LK, Biehl H, Gerdes K, Andersson P (1987) Conditional suicide system for containment of bacteria and plasmids. Biotechnology 5:1315–1318 Moore LW (1985) Considerations for the use of Agrobacterium radiobacter K84 in agricultural ecosystems. In: Halvorson HO, Pramer D, Rogul M (eds) Engineered organisms in the environment: Scientific issues. Am Soc Microbiol, Washington DC, pp 122–128 Nicholas RB (1987) Biotechnology in hazardous waste disposal: An unfulfilled promise. ASM News 53:138–142 Nieto KF, Frankenberger WTJr (1989) Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biol Biochem 21:967–972 Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–228 Okon Y, Hadar YA (1987) Microbial inoculants as crop yield enhancers. CRC Crit Rev Biotechnol 6:61–85 Paau AS (1989) Improvement of Rhizobium inoculants. Appl Environ Microbiol 55:862–865 Packowski ME, Berryhill DL (1979) Survival of Rhizobium phaseoli in coal based inoculants. Appl Environ Microbiol 38:612–615 Parke JL, Moen R, Rovira AD, Bowen GD (1986) Soil water flow affects the rhizosphere distribution of a seed-borne biological control agent, Pseudomonas fluorescens. Soil Biol Biochem 18:583–588 Postma J Van Elsas JD, Govaert JM, Van Veen JA (1988) The dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil as determined by immunofluorescence and selective plating techniques. FEMS Microbiol Ecol 53:251–260 Postma J, Hok-A-Hin CH, Van Veen JA (1990) Role of microniches in protecting introduced Rhizobium leguminosarum biovar trifolii against competition and predation in soil. Appl Environ Microbiol 56:495–502 Richards BN (1987) The microbiology of terrestrial ecosystems. Longman Science, Harlow Richardson AE, Henderson AP, James GS, Simpson RJ (1988) Consequences of soil acidity and the effect of lime on the nodulation of Trifolium subterraneum L. growing in an acid soil. Soil Biol Biochem 20:439–445 Roughley RJ (1970) The preparation and use of legume seed inoculants. Plant and Soil 32:675–701 Schroth MN, Loper JE, Hildebrand DC (1984) Bacteria as biocontrol agents of plant disease. In: Klug MJ, Reddy CA, (eds) Current perspectives in microbial ecology. Am Soc Microbiol, Washington DC, pp 362–369 Shirkot CK, Gupta KG (1985) Accelerated tetramethylthiuram disulfide (TMTD) degradation in soil by inoculation with TMD-utilizing bacteria. Bull Environ Contam Toxicol 35:354–361 Sheppard LJ, Hooker JE, Wheeler CT, Smith RI (1989) Glass-house evaluation of the growth of Alnus rubra and Alnus glutinosa on peat and acid brown earth soils when inoculated with four sources of Frankia.In: Skinner FA, Boddey RM, Fendrik I (eds) Nitrogen fixation with non-legumes. Kluwer Academic Publishers, Dordrecht, pp 35–46 Smolander A, Van Dijk C, Sundman V (1988) Survival of Frankia strains introduced into soil. Plant and Soil 106:65–72 Sougoufara B, Diem HG, Dommergues YR (1989) Response of field-grown Casuarina equisetifolia to inoculation with Frankia strain ORS 021001 entrapped in alginate beads. Plant and Soil 118:133–137 Stacey G (1985) The Rhizobium experience. In: Halvorson HO, Pramer D, Rogul M (eds) Engineered organisms in the environment: Scientific issues. Am Soc Microbiol, Washington DC, pp 109–121 Stacey G, Upchurch RG (1984) Rhizobium inoculation of legumes. Trends Biotechnol 2:65–69 Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54:2185–2191 Strijdom BW, Deschodt CC (1976) Carriers of rhizobia and the effects of prior treatment on the survival of rhizobia. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London, pp 151–168 Thompson JA (1980) Production and quality control of legume inoculants. In: Bergersen FJ (ed) Methods for evaluating biological nitrogen fixation. John Wiley, London, pp 489–533 Trevors JT, Van Elsas JD, Van Overbeek LS, Starodub ME (1990) Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol 56:401–408 Van Elsas JD, Dijkstra AF, Govaert JM, Van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160 Van Elsas JD, Govaert JM, Van Veen JA (1987) Transfer of plasmid pFT30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biol Biochem 19:639–647 Watrud LS, Perlak FJ, Tran MT, Kusano K, Mayer EJ, Miller-Wideman MA, Obukowicz MG, Nelson DR, Kreitinger JP, Kaufman JR (1985) Cloning of the Bacillus thuringiensis subsp. kurstaki delta-endotoxin gene into Pseudomonas fluorescens: Molecular biology and ecology of an engineered microbial pesticide. In: Halvorson HO, Pramer O, Rogul M (eds) Engineered organisms in the environment: Scientific issues. Am Soc Microbiol, Washington DC, pp 40–46