Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các phương pháp xác định lưu lượng máu cơ xương: sự phát triển, điểm mạnh và hạn chế
Tóm tắt
Kể từ lần đo lưu lượng máu ở chi tại trạng thái nghỉ và trong khi kích thích dây thần kinh vào cuối thế kỷ 19, một số phương pháp đã được phát triển để xác định lưu lượng máu ở chi và cơ bắp ở người. Các phương pháp này, đã được áp dụng trong nghiên cứu các khía cạnh như điều hòa lưu lượng máu, hấp thu oxy và chuyển hóa, khác nhau về mặt điểm mạnh và mức độ hạn chế nhưng hầu hết đều có những ưu điểm cho các bối cảnh cụ thể. Mục đích của bài tổng quan này là mô tả nguồn gốc và các nguyên tắc cơ bản của các phương pháp, cũng như các khía cạnh quan trọng và yêu cầu của các quy trình. Một trong những phương pháp sớm nhất, đo thể tích tĩnh mạch bằng bít tĩnh mạch (venous occlusion plethysmography), là một phương pháp không xâm lấn vẫn được sử dụng rộng rãi và cung cấp các giá trị tương tự như các phương pháp đo lưu lượng máu trực tiếp hơn như siêu âm Doppler. Phương pháp pha loãng nhiệt độ liên tục vẫn là phương pháp phù hợp nhất để xác định lưu lượng máu trong khi tập thể dục tối đa. Đối với lưu lượng máu nghỉ và tập thể dục nhẹ đến vừa phải, phương pháp siêu âm Doppler không xâm lấn, nếu được thực hiện bởi một người điều khiển có kỹ năng, là một lựa chọn hợp lý. Chụp cắt lớp phát xạ positron với nước đánh dấu phóng xạ là một phương pháp tiên tiến yêu cầu thiết bị rất phức tạp và cho phép xác định lưu lượng máu theo cơ, lưu lượng máu khu vực và ước tính tính không đồng nhất lưu lượng máu trong một cơ. Cuối cùng, phương pháp siêu âm tương phản có thể mang lại hứa hẹn trong việc đánh giá lưu lượng máu theo cơ nhưng việc giải thích dữ liệu thu được vẫn còn không chắc chắn. Hiện tại thiếu các phương pháp độ phân giải cao cho việc hình dung và theo dõi liên tục vi tuần hoàn ở cơ xương ở người.
Từ khóa
#lưu lượng máu #cơ xương #phương pháp đo #siêu âm #không xâm lấnTài liệu tham khảo
Allen WJ, Barcroft H, Edholm OG (1946) On the action of adrenaline on the blood vessels in human skeletal muscle. J Physiol 105:255–267
Allwood MJ, Birchall I, Staffurth JS (1958) Circulatory changes in the forearm during insulin hypoglycaemia studied by regional 24Na clearance and by plethysmography. J Physiol 143:332–342
Andersen P, Saltin B (1985) Maximal perfusion of skeletal-muscle in man. J Physiol 366:233–249
Andersen P, Adams RP, Sjøgaard G et al (1985) Dynamic knee extension as model for study of isolated exercising muscle in humans. J Appl Physiol 59:1647–1653
Ament W, Lubbers J, Rakhorst G, Vaalburg W, Verkerke GJ, Paans AM, Willemsen AT (1998) Skeletal muscle perfusion measured by positron emission tomography during exercise. Pflugers Arch-Eur J Physiol 436:653–658
Barber FE, Baker DW, Nation AW et al (1974) Ultrasonic duplex echo-Doppler scanner. IEEE Trans Biomed Eng 21:109–113. https://doi.org/10.1109/TBME.1974.324295
Benjamin N, Cockcroft JR, Collier JG et al (1989) Local inhibition of converting enzyme and vascular responses to angiotensin and bradykinin in the human forearm. J Physiol 412:543–555
Bernink PJ, Lubbers J, Barendsen GJ, van den Berg J (1982) Blood flow in the calf during and after exercise: measurements with Doppler ultrasound and venous occlusion plethysmography in healthy subjects and in patients with arterial occlusive disease. Angiology 33:146–160. https://doi.org/10.1177/000331978203300302
Boushel R, Langberg H, Olesen J et al (2000) Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 89:1868–1878. https://doi.org/10.1152/jappl.2000.89.5.1868
Brodie TG (1902) On recording variations in volume by air-transmission. A new form of volume-recorder. J Physiol 27:473–487. https://doi.org/10.1111/(ISSN)1469-7793
Cerretelli P, Marconi C, Pendergast D et al (1984) Blood flow in exercising muscles by xenon clearance and by microsphere trapping. J Appl Physiol Respir Environ Exerc Physiol 56:24–30. https://doi.org/10.1152/jappl.1984.56.1.24
Chang PC, Verlinde R, Bruning T, van Brummelen P (1988) A microcomputer-based, R-wave triggered system for hemodynamic measurements in the forearm. Comput Biol Med 18:157–163
Cherrick GR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600. https://doi.org/10.1172/JCI104072
Christ F, Bauer A, Brügger D et al (2000) Description and validation of a novel liquid metal-free device for venous congestion plethysmography. J Appl Physiol 89:1577–1583
Coggins M, Lindner J, Rattigan S et al (2001) Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes 50:2682–2690
Colacino JM, Grubb B, Jöbsis FF (1981) Infra-red technique for cerebral blood flow: comparison with 133Xenon clearance. Neurol Res 3:17–31
Cooper KE, Edholm OG, Mottram RF (1955) The blood flow in skin and muscle of the human forearm. J Physiol 128:258–267
Dahn I (1964) On the calibration and accuracy of segmental calf plethysmography with a description of a new expansion chamber and a new sleeve. Scand J Clin Lab Inv 16:347–356
Dahn I, Hallböök T (1970) Simultaneous blood flow measurements by water and strain gauge plethysmography. Scand J Clin Lab Inv 25:419–428
Duff F, Greenfield AD, Shepherd JT, Thompson ID (1953) A quantitative study of the response to acetylcholine and histamine of the blood vessels of the human hand and forearm. J Physiol 120:160–170. https://doi.org/10.1111/(ISSN)1469-7793
Eickhoff JH, Kjaer L, Siggaard-Andersen J (1980) A comparison of the strain-gauge and the Dohn air-filled plethysmographs for blood flow measurements in the human calf. Acta Chir Scand Suppl 502:15–20
Fegler G (1954) Measurement of cardiac output in anaesthetized animals by a thermodilution method. Q J Exp Physiol Cogn Med Sci 39:153–164
Fronek A, Ganz V (1960) Measurement of flow in single blood vessels including cardiac output by local thermodilution. Circ Res 8:175–182
Ganz V, Hlavova A, Fronek A et al (1964) Measurement of blood flow in the femoral artery in man at rest and during exercise by local thermodilution. Circulation 30:86–89
Gaskell WH (1877) The changes of the blood-stream in muscles through stimulation of their nerves. J Anat Physiol 11:360–402.3
Gaskell WH (1880) On the tonicity of the heart and blood vessels. J Physiol 3:48–92.16
Gill RW (1979) Pulsed Doppler with B-mode imaging for quantitative blood flow measurement. Ultrasound Med Biol 5:223–235
Gill RW (1985) Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 11:625–641
Gonzalez-Alonso J, Quistorff B, Krustrup P et al (2000) Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 524 Pt 2:603–615. https://doi.org/10.1111/j.1469-7793.2000.00603.x
Green S, Thorp R, Reeder EJ et al (2011) Venous occlusion plethysmography versus Doppler ultrasound in the assessment of leg blood flow during calf exercise. Eur J Appl Physiol 111:1889–1900. https://doi.org/10.1007/s00421-010-1819-6
Greenfield AD, Whitney RJ, Mowbray JF (1963) Methods for the investigation of peripheral blood flow. Br Med Bull 19:101–109
Grimby G, Häggendal E, Saltin B (1967) Local xenon 133 clearance from the quadriceps muscle during exercise in man. J Appl Physiol 22:305–310. https://doi.org/10.1152/jappl.1967.22.2.305
Heinonen I, Nesterov SV, Kemppainen J et al (2007) Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans. J Appl Physiol 103:2042–2048. https://doi.org/10.1152/japplphysiol.00567.2007
Heinonen I, Bengt S, Jukka K et al (2011) Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition. Am J Physiol Heart Circ Physiol 300:1510–1517
Heinonen I, Saltin B, Hellsten Y, Kalliokoski KK (2017) The effect of nitric oxide synthase inhibition with and without inhibition of prostaglandins on blood flow in different human skeletal muscles. Eur J Appl Physiol 117:1175–1180. https://doi.org/10.1007/s00421-017-3604-2
Hewlet AW, van Zwaluwenburg JG (1909) The rate of blood flow in the arm. Heart 1:87–97
Hillestad LK (1963) The peripheral blood flow in intermittent claudication. v. Plethysmographic studies. The significance of the calf blood flow at rest and in response to timed arrest of the circulation. Acta Med Scand 174:23–41
Howry DH, Bliss WR (1952) Ultrasonic visualization of soft tissue structures of the body. J Lab Clin Med 40:579–592
Hudson JM, Karshafian R, Burns PN (2009) Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles. Ultrasound Med Biol 35:2007–2020. https://doi.org/10.1016/j.ultrasmedbio.2009.06.1102
Jayaweera AR, Edwards N, Glasheen WP et al (1994) In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 74:1157–1165
Jorfeldt L, Wahren J (1971) Leg blood supply during exercise: methodological studies with a dye dilution technic. Nord Med 86:1009
Kalliokoski KK, Kemppainen J, Larmola K et al (2000) Muscle blood flow and flow heterogeneity during exercise studied with positron emission tomography in humans. Eur J Appl Physiol 83:395–401. https://doi.org/10.1007/s004210000267
Kalliokoski KK, Kuusela TA, Nuutila P et al (2001a) Perfusion heterogeneity in human skeletal muscle: fractal analysis of PET data. Eur J Nucl Med 28:450–456
Kalliokoski KK, Oikonen V, Takala TO et al (2001b) Enhanced oxygen extraction and reduced flow heterogeneity in exercising muscle in endurance-trained men. Am J Physiol Endocrinol Metab 280:E1015–E1021
Kemppainen J, Stolen K, Kalliokoski KK et al (2003) Exercise training improves insulin stimulated skeletal muscle glucose uptake independent of changes in perfusion in patients with dilated cardiomyopathy. J Cardiac Fail 9:286–295. https://doi.org/10.1054/jcaf.2003.35
Kety SS (1949) Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J 38:321–328
Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41
Krix M, Weber M-A, Krakowski-Roosen H et al (2005) Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J Ultrasound Med 24:431–441
Krix M, Krakowski-Roosen H, Kauczor H-U et al (2009) Real-time contrast-enhanced ultrasound for the assessment of perfusion dynamics in skeletal muscle. Ultrasound Med Biol 35:1587–1595. https://doi.org/10.1016/j.ultrasmedbio.2009.05.006
Laaksonen MS, Kalliokoski KK, Kyröläinen H et al (2003) Skeletal muscle blood flow and flow heterogeneity during dynamic and isometric exercise in humans. AJP Heart Circ Physiol 284:H979–H986. https://doi.org/10.1152/ajpheart.00714.2002
Laaksonen MS, Kemppainen J, Kyröläinen H et al (2013) Regional differences in blood flow, glucose uptake and fatty acid uptake within quadriceps femoris muscle during dynamic knee-extension exercise. Eur J Appl Physiol 113:1775–1782. https://doi.org/10.1007/s00421-013-2609-8
Lassen NA (1964) Muscle blood flow in normal man and in patients with intermittent claudication evaluated by simultaneous Xe133 and Na24 clearances. J Clin Invest 43:1805–1812. https://doi.org/10.1172/JCI105054
Lassen NA, Lindbjerg J, Munck O (1964) Measurement of blood-flow through skeletal muscle by intramuscular injection of xenon-133. Lancet 1:686–689
Lassen NA, Henriksen O, Sejrsen P (2011) Indicator methods for measurement of organ and tissue blood flow. 23–63. https://doi.org/10.1002/cphy.cp020302
Lewis P, Psaila JV, Davies WT et al (1986) Measurement of volume flow in the human common femoral artery using a duplex ultrasound system. Ultrasound Med Biol 12:777–784
Mortensen SP, Dawson EA, Yoshiga CC et al (2005) Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol 566:273–285. https://doi.org/10.1113/jphysiol.2005.086025
Mulder AH, van Dijk APJ, Smits P, Tack CJ (2008) Real-time contrast imaging: a new method to monitor capillary recruitment in human forearm skeletal muscle. Microcirculation 15:203–213. https://doi.org/10.1080/10739680701610681
Nuutila P, Raitakari M, Laine H et al (1996) Role of blood flow in regulating insulin-stimulated glucose uptake in humans. Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography. J Clin Invest 97:1741–1747. https://doi.org/10.1172/JCI118601
Pavek K, Boska D, Selecky FV (1964) Measurement of cardiac output by thermodilution with constant rate injection of indicator. Circ Res 15:311–319
Petrie JR, Ueda S, Morris AD et al (1998) How reproducible is bilateral forearm plethysmography? Br J Clin Pharmacol 45:131–139. https://doi.org/10.1046/j.1365-2125.1998.00656.x
Rådegran G (1997) Ultrasound Doppler estimates of femoral artery blood flow during dynamic knee extensor exercise in humans. J Appl Physiol 83:1383–1388
Rådegran G (1999) Limb and skeletal muscle blood flow measurements at rest and during exercise in human subjects. Proc Nutr Soc 58:887–898
Rådegran G, Calbet JA (2001) Role of adenosine in exercise-induced human skeletal muscle vasodilatation. Acta Physiol Scand 171:177–185
Rådegran G, Saltin B (1998) Muscle blood flow at onset of dynamic exercise in humans. Am J Physiol 274:H314–H322
Rådegran G, Saltin B (1999) Nitric oxide in the regulation of vasomotor tone in human skeletal muscle. Am J Physiol 276:H1951–H1960
Rådegran G, Blomstrand E, Saltin B (1999) Peak muscle perfusion and oxygen uptake in humans: importance of precise estimates of muscle mass. J Appl Physiol 87:2375–2380
Rich DA (1997) A brief history of positron emission tomography. J Nucl Med Technol 25:4–11
Roberts DH, Tsao Y, Breckenridge AM (1986) The reproducibility of limb blood flow measurements in human volunteers at rest and after exercise by using mercury-in-silastic strain gauge plethysmography under standardized conditions. Clin Sci (Lond) 70:635–638
Rosenmeier JB, Hansen J, González-Alonso J (2004) Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle. J Physiol 558:351–365. https://doi.org/10.1113/jphysiol.2004.063107
Rudroff T, Weissman JA, Bucci M et al (2014) Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions. J Physiol 592:337–349. https://doi.org/10.1113/jphysiol.2013.264614
Ruotsalainen U, Raitakari M, Nuutila P et al (1997) Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET. J Nucl Med 38:314–319
Sadler W (1869) Arbeiten aus der phys, 12th edn. Anstalt Zu, Leipzig
Saltin B (1985) Hemodynamic adaptations to exercise. Am J Cardiol 55:42D–47D
Satomura S (1957) Ultrasonic Doppler method for the inspection of cardiac functions. J Acoust Soc Am 29:1181–1185. https://doi.org/10.1121/1.1908737
Satomura S, Matsubara S (1956) A new method of mechanical vibration measurement and its application. Mem. Inst. Sci. Ind. Res. Osaka Univ, Suita
Schrage WG, Joyner MJ, Dinenno FA (2004) Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. J Physiol 557:599–611. https://doi.org/10.1113/jphysiol.2004.061283
Shoemaker JK, Pozeg ZI, Hughson RL (1996) Forearm blood flow by Doppler ultrasound during test and exercise: tests of day-to-day repeatability. Med Sci Sports Exerc 28:1144–1149
Stenow EN, Oberg PA (1993) Venous occlusion plethysmography using a fiber-optic sensor. IEEE Trans Biomed Eng 40:284–289. https://doi.org/10.1109/10.216412
Stewart GN (1897) Researches on the circulation time and on the influences which affect it. J Physiol 22:159–183
Stewart GN (1921) The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Am J Physiol 58:20–44
Tobias CA, Lawrence JH (1945) The elimination of carbon monoxide from the human body with reference to the possible conversion of CO to CO2. Am J Physiol 145:253–263. https://doi.org/10.1152/ajplegacy.1945.145.2.253
Wahren J, Jorfeldt L (1973) Determination of leg blood flow during exercise in man: an indicator-dilution technique based on femoral venous dye infusion. Clin Sci Mol Med 45:135–146
Walker HA, Jackson G, Ritter JM, Chowienczyk PJ (2001) Assessment of forearm vasodilator responses to acetylcholine and albuterol by strain gauge plethysmography: reproducibility and influence of strain gauge placement. Br J Clin Pharmacol 51:225–229. https://doi.org/10.1046/j.1365-2125.2001.00330.x
Walloe L, Wesche J (1988) Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. J Physiol 405:257–273
Wei K, Jayaweera AR, Firoozan S et al (1998) Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97:473–483
Wesche J (1986) The time course and magnitude of blood flow changes in the human quadriceps muscles following isometric contraction. J Physiol 377:445–462
Whitney RJ (1953) The measurement of volume changes in human limbs. J Physiol 121:1–27. https://doi.org/10.1113/jphysiol.1953.sp004926
Wild JJ, Neal D (1951) Use of high-frequency ultrasonic waves for detecting changes of texture in living tissues. Lancet 1:655–657
Wilkins RW, Bradley SE (1946) Changes in arterial and venous blood pressure and flow distal to a cuff inflated on the human arm. Am J Physiol 147:260–269
Wilkinson IB, Webb DJ (2001) Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. Br J Clin Pharmacol 52:631–646. https://doi.org/10.1046/j.1365-2125.2001.01495.x
Williams CA, Lind AR (1979) Measurement of forearm blood flow by venous occlusion plethysmography: influence of hand blood flow during sustained and intermittent isometric exercise. Eur J Appl Physiol Occup Physiol 42:141–149