Methods for calculating the resonant part of the atomic factor in crystals with partial filling of the crystallographic position
Tóm tắt
The resonant part of the tensor atomic factor, which is important for incident radiation energies close to the atom absorption edges, is sensitive to the local environment of a scattering atom (near-range order). In this paper, a method for mathematical modeling of the resonant part of the atomic factor is developed by taking into account crystal-lattice relaxation caused by the partial filling of a crystallographic position. It is shown that an additional contribution leading to the appearance of purely resonance “forbidden” reflections can exist in the resonant atomic factor. As examples, crystals of potassium dihydrophosphate (KDP) and rubidium dihydrophosphate (RDP) are used to calculate such a contribution to the atomic factor of potassium and rubidium, and the last is compared to the thermally induced and dipole-quadrupole contributions to the atomic factor.
Từ khóa
Tài liệu tham khảo
M. Blume, in Resonant Anomalous X-Ray Scattering, Ed. by G. Materlik, C. J. Sparks, and K. (Elsevier, Amsterdam, 1994), p. 495.
J. L. Hodeau, V. Favre-Nicolin, S. Bos, H. Renevier, E. Lorenzo, and J.-F. Berar, Chem. Rev. 101, 1834 (2001).
S. W. Lovesey and E. Balcar, J. Phys.: Condens. Matter 8, 10983 (1996).
V. E. Dmitrienko and E. N. Ovchinnikova, Crystallogr. Rep. 48, S52 (2003).
V. E. Dmitrienko, K. Ishida, A. Kirfel, and E. N. Ovchinnikova, Acta Crystallogr. A61, 481 (2005).
K. A. Kozlovskaya, E. N. Ovchinnikova, V. E. Dmitrienko, and A. Rogalev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2, 573 (2008).
A. A. Antonenko, E. N. Ovchinnikova, V. E. Dmitrienko, and S. P. Collinz, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2, 560 (2008).
J. Kokubun, M. Kanazava, K. Ishida, and V. E. Dmitrienko, Phys. Rev. B 64, 073203–1 (2001).
A. Kirfel, J. Grybos, and V. E. Dmitrienko, Phys. Rev. B 66, 165202–1 (2002).
S. P. Collins, D. Laundy, V. E. Dmitrienko, et al., Phys. Rev. B 68, 064110–1 (2003).
A. P. Oreshko, V. E. Dmitrienko, and E. N. Ovchinnikova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 134 (2011).
B. Guillaume, S. P. Collins, N. Gareth, E. N. Ovchinnikova, and V. E. Dmitrienko, Eur. Phys. J.: Spec. Top. 208, 53 (2012).
V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 56, 340 (2000).
P. M. de Wolff, T. Janssen, and A. Janner, Acta Crystallogr. A 37, 615 (1981).
A. Janner and T. Janssen, Phys. Rev. B 15, 643 (1977).
A. Yamamoto, T. Janssen, A. Janner, P. M. de Wolff, Acta Crystallogr. A 41, 528 (1985).
F. Jona and G. Shirane, Ferroelectric Crystals (Dover, New York, 1993).
P. Bartschi, B. Matthias, W. Merz, and P. Scherrer, Helv. Phys. Acta 18, 240 (1945).
A. R. Al-Karaghoul, B. Abdul-Wahab, E. Ajaj, and A. Sequeir, Acta Crystallogr. 34, 1040 (1978).
N. S. J. Kennedy and R. J. Nelmes, J. Phys. C: Solid State Phys. 13, 4841 (1980).
R. J. Blinc, Phys. Chem. Solids 13, 204 (1960).
J. C. Slater, J. Chem. Phys., 9 (1941).
Y. Takagi, J. Phys. Soc. Jpn., 3 (1948).
K. Kobayashi, J. Phys. Soc. Jpn., 24 (1968).
R. J. Nelmes, J. Phys. C: Solid State Phys. 21, 881 (1988).
H. Sugimoto and S. Ikeda, J. Phys.: Condens. Matter 8, 603 (1996).
E. Kh. Mukhamedzhanov, M. V. Koval’chuk, M. M. Borisov, E. N. Ovchinnikova, E. V. Troshkov, and V. E. Dmitrienko, Crystallogr. Rep. 55, 174 (2010).
Yu. I. Sirotine and M. P. Shaskolskaia, Fundamentals of Crystal Physics (Nauka, Moscow, 1975; Mir, Moscow, 1982).
http://www-cristallo.grenoble.cnrs.fr/simulation
S. Koval, J. Kohanoff, J. Lasave, G. Colizzi, and R. L. Migoni, Phys. Rev. B 71, 184 (2005).
J. Lasave, S. Koval, N. S. Dalal, and R. Migoni, Phys. Rev. B 72, 104 (2005).
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 169 (1996).
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).