Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs

Diana Luise1, Charlotte Lauridsen2, Paolo Bosi1, Paolo Trevisi1
1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
2Faculty of Science and Technology, Department of Animal Science, Aarhus University, Tjele, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

COMMISSION IMPLEMENTING DECISION of 26.6.2017 concerning, in the framework of Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the marketing authorisations for veterinary medicinal products containing “zinc oxide” to be administered orally to food producing species. 2017. Available from: https://ec.europa.eu/health/documents/community-register/2017/20170626136754/dec_136754_en.pdf .

Suiryanrayna MVAN, Ramana JV. A review of the effects of dietary organic acids fed to swine. J Anim Sci Biotechnol. 2015;6:45.

Zeng Z, Zhang S, Wang H, Piao X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J Anim Sci Biotechnol. 2015;6:7.

Roselli M, Pieper R, Rogel-Gaillard C, de Vries H, Bailey M, Smidt H, et al. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim Feed Sci Technol. 2017;233:104–19.

Le Floc’h N, Wessels A, Corrent E, Wu G, Bosi P. The relevance of functional amino acids to support the health of growing pigs. Anim Feed Sci Technol. 2018;245:104–16.

Waititu SM, Yin F, Patterson R, Yitbarek A, Rodriguez-Lecompte JC, Nyachoti CM. Dietary supplementation with a nucleotide-rich yeast extract modulates gut immune response and microflora in weaned pigs in response to a sanitary challenge. Animal. 2017;11(12):2156–64.

Che L, Hu L, Liu Y, Yan C, Peng X, Xu Q, et al. Dietary nucleotides supplementation improves the intestinal development and immune function of neonates with intra-uterine growth restriction in a pig model. PLoS One. 2016;11(6):e0157314.

Zhang J, Li Z, Cao Z, Wang L, Li X, Li S, et al. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J Anim Sci Biotechnol. 2015;6:39.

Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002;23(6):301–4.

Yao M, Gao W, Tao H, Yang J, Huang T. The regulation effects of danofloxacin on pig immune stress induced by LPS. Res Vet Sci. 2017;110:65–71.

Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009;30(10):475–87.

Trevisi P, Colombo M, Priori D, Fontanesi L, Galimberti G, Calò G, et al. Comparison of three patterns of feed supplementation with live Saccharomyces cerevisiae yeast on postweaning diarrhea, health status, and blood metabolic profile of susceptible weaning pigs orally challenged with Escherichia coli F4ac. J Anim Sci. 2015;93(5):2225–33.

Trevisi P, Corrent E, Mazzoni M, Messori S, Priori D, Gherpelli Y, et al. Effect of added dietary threonine on growth performance, health, immunity and gastrointestinal function of weaning pigs with differing genetic susceptibility to Escherichia coli infection and challenged with E. coli K88ac. J Anim Physiol Anim Nutr. 2015;99(3):511–20.

Fairbrother JM, Nadeau É, Bélanger L, Tremblay CL, Tremblay D, Brunelle M, et al. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs. Vaccine. 2017;35(2):353–60.

Sugiharto S, Lauridsen C, Jensen BB. Gastrointestinal ecosystem and immunological responses in E.coli challenged pigs after weaning fed liquid diets containing whey permeate fermented with different lactic acid bacteria. Anim Feed Sci Tech. 2015;207:278–82.

Virdi V, Coddens A, De Buck S, Millet S, Goddeeris BM, Cox E, et al. Orally fed seeds producing designer IgAs protect weaned piglets against enterotoxigenic Escherichia coli infection. Proc Natl Acad Sci U S A. 2013;110(29):11809–14.

Sugiharto S, Hedemann MS, Lauridsen C. Plasma metabolomic profiles and immune responses of piglets after weaning and challenge with E. coli. J Anim Sci Biotech. 2014;5(1):17.

Clark JM. The 3Rs in research: a contemporary approach to replacement, reduction and refinement. Br J Nutr. 2018;120(s1):S1–7.

Dubreuil JD, Isaacson RE, Schifferli DM. Animal enterotoxigenic Escherichia coli. EcoSal Plus. 2016;7(1). https://doi.org/10.1128/ecosalplus.ESP-0006-2016 .

Ravi M, Ngeleka M, Kim SH, Gyles C, Berthiaume F, Mourez M, et al. Contribution of AIDA-I to the pathogenicity of a porcine diarrheagenic Escherichia coli and to intestinal colonization through biofilm formation in pigs. Vet Microbiol. 2007;120(3–4):308–19.

Moredo FA, Piñeyro PE, Márquez GC, Sanz M, Colello R, Etcheverría A, et al. Enterotoxigenic Escherichia coli subclinical infection in pigs: bacteriological and genotypic characterization and antimicrobial resistance profiles. Foodborne Pathog Dis. 2015;12(8):704–11.

Zajacova ZS, Faldyna M, Kulich P, Kummer V, Maskova J, Alexa P. Experimental infection of gnotobiotic piglets with Escherichia coli strains positive for EAST1and AIDA. Vet Immunol Immunopathol. 2013;152(1–2):176–82.

Loos M, Geens M, Schauvliege S, Gasthuys F, Van Der Meulen J, Dubreuil D, et al. Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with Enterotoxigenic Escherichia coli. PLoS One. 2012;7(7):e41041.

Luppi A. Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porcine Health Manag. 2017;3:16.

Jacobs AA, Venema J, Leeven R, van Pelt-Heerschap H, de Graaf FH. Inhibition of adhesive activity of K88 fibrillae by peptides derived from the K88 adhesin. J Bacteriol. 1987;169(2):735–41.

Jin LZ, Marquardt RR, Zhao X. A strain of enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Appl Environ Microbiol. 2000;66(10):4200–4.

Van den Broeck W, Cox E, Oudega B, Goddeeris BM. The F4 fimbrial antigen of Escherichia coli and its receptors. Vet Microbiol. 2000;71(3–4):223–44.

Francis DH, Erickson AK, Grange PA. K88 adhesins of enterotoxigenic Escherichia coli and their porcine enterocyte receptors. Adv Exp Med Biol. 1999;473:147–54.

Grange PA, Erickson AK, Levery SB, Francis DH. Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for the K88ad fimbrial adhesin of Escherichia coli. Infect Immun. 1999;67(1):165–72.

Melkebeek V, Rasschaert K, Bellot P, Tilleman K, Favoreel H, Deforce D, et al. Targeting aminopeptidase N, a newly identified receptor for F4ac fimbriae, enhances the intestinal mucosal immune response. Mucosal Immunol. 2012;5(6):635–45.

Tusell SM, Schittone SA, Holmes KV. Mutational analysis of aminopeptidase n, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol. 2007;81(3):1261–73.

Coddens A, Valis E, Benktander J, Ångström J, Breimer ME, Cox E, et al. Erythrocyte and porcine intestinal glycosphingolipids recognized by F4 fimbriae of Enterotoxigenic Escherichia coli. PLoS One. 2011;6(9):e23309.

Grange PA, Mouricout MA, Levery SB, Francis DH, Erickson AK. Evaluation of receptor binding specificity of Escherichia coli K88 (F4) fimbrial adhesin variants using porcine serum transferrin and glycosphingolipids as model receptors. Infect Immun. 2002;70(5):2336–43.

Rippinger P, Bertschinger HU, Imberechts H, Nagy B, Sorg I, Stamm M, et al. Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol. 1995;45(4):281–95.

Francis DH. Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. J Swine Health Prod. 2002;10(4):171–5.

Wittig W, Klie H, Gallien P, Lehmann S, Timm M, Tschäpe H. Prevalence of the fimbrial antigens F18 and K88 and of enterotoxins and verotoxins among Escherichia coli isolated from weaned pigs. Zentralbl Bakteriol. 1995;283(1):95–104.

Nagy B, Whipp SC, Imberechts H, Bertschinger HU, Dean-Nystrom EA, Casey TA, et al. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with edema disease or diarrhoea. Microb Pathog. 1997;22(1):1–11.

Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol. 2005;295(6–7):443–54.

Smeds A, Hemmann K, Jakava-Viljanen M, Pelkonen S, Imberechts H, Palva A. Characterization of the adhesin of Escherichia coli F18 fimbriae. Infect Immun. 2001;69(12):7941–5.

Coddens A, Verdonck F, Tiels P, Rasschaert K, Goddeeris BM, Cox E. The age-dependent expression of the F18+ E. coli receptor on porcine gut epithelial cells is positively correlated with the presence of histo-blood group antigens. Vet Microbiol. 2007;122(3–4):332–41.

Nagy B, Fekete PZ. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res. 1999;30(2–3):259–84.

Peterson JW, Whipp SC. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun. 1995;63(4):1452–61.

Kyriakis SC, Tsiloyiannis VK, Vlemmas J, Sarris K, Tsinas AC, Alexopoulos C, et al. The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Res Vet Sci. 1999;67(3):223–8.

Trevisi P, Latorre R, Priori D, Luise D, Archetti I, Mazzoni M, et al. Effect of feed supplementation with live yeast on the intestinal transcriptome profile of weaning pigs orally challenged with Escherichia coli F4. Animal. 2017;11(1):33–44.

Spitzer F, Vahjen W, Pieper R, Martinez-Vallespin B, Zentek J. A standardised challenge model with an enterotoxigenic F4+ Escherichia coli strain in piglets assessing clinical traits and faecal shedding of fae and Est-II toxin genes. Arch Anim Nutr. 2014;68(6):448–59.

Girard M, Thanner S, Pradervand N, Hu D, Ollagnier C, Bee G. Hydrolysable chestnut tannins for reduction of postweaning diarrhea: efficacy on an experimental ETEC F4 model. PLoS One. 2018;13(5):e0197878.

Coddens A, Loos M, Vanrompay D, Remon JP, Cox E. Cranberry extract inhibits in vitro adhesion of F4 and F18+ Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18+ verotoxigenic E. coli. Vet Microbiol. 2017;202:64–71.

Jørgensen CB, Cirera S, Anderson SI, Archibald AL, Raudsepp T, Chowdhary B, et al. Linkage and comparative mapping of the locus controlling susceptibility towards E. coli F4ab/ac diarrhoea in pigs. Cytogenet Genome Res. 2003;102(1–4):157–62.

Ren J, Yan X, Ai H, Zhang Z, Huang X, Ouyang J, et al. Susceptibility towards Enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS One. 2012;7(9):e44573.

Zhang B, Ren J, Yan X, Huang X, Ji H, Peng Q, et al. Investigation of the porcine MUC13 gene: isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coll F4ab/ac. Anim Genet. 2008;39(3):258–66.

Ji H, Ren J, Yan X, Huang X, Zhang B, Zhang Z, et al. The porcine MUC20 gene: molecular characterization and its association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Mol Biol Rep. 2011;38(3):1593–601.

Wang Y, Ren J, Lan L, Yan X, Huang X, Peng Q, et al. Characterization of polymorphisms of transferrin receptor and their association with susceptibility to ETEC F4ab/ac in pigs. J Anim Breed Genet. 2007;124(4):225–9.

Ouyang J, Zeng W, Ren J, Yan X, Zhang Z, Yang M, et al. Association of B3GNT5 polymorphisms with susceptibility to ETEC F4ab/ac in the white Duroc × Erhualian intercross and 15 outbred pig breeds. Biochem Genet. 2012;50(1–2):19–33.

Goetstouwers T, Van Poucke M, Coppieters W, Nguyen VU, Melkebeek V, Coddens A, et al. Refined candidate region for F4ab/ac enterotoxigenic Escherichia coli susceptibility situated proximal to MUC13 in pigs. PLoS One. 2014;9(8):e105013.

Fontanesi L, Bertolini F, Dall’Olio S, Buttazzoni L, Gallo M, Russo V. Analysis of association between the MUC4 g.8227C>G polymorphism and production traits in Italian heavy pigs using a selective genotyping approach. Anim Biotechnol. 2012;23(3):147–55.

Syrovnev GI. Genetic polymorphism of FUT1 and MUC4 loci in a local population of Ukrainian meat bread pigs. Tsitol Genet. 2014;48(5):54–9.

Roubos-van den Hil PJ, Litjens R, Oudshoorn AK, Resink JW, Smits CHM. New perspectives to the enterotoxigenic E. coli F4 porcine infection model: susceptibility genotypes in relation to performance, diarrhoea and bacterial shedding. Vet Microbiol. 2017;202:58–63.

Rasschaert K, Verdonck F, Goddeeris BM, Duchateau L, Cox E. Screening of pigs resistant to F4 enterotoxigenic Escherichia coli (ETEC) infection. Vet Microbiol. 2007;123(1–3):249–53.

Meijerink E, Neuenschwander S, Fries R, Dinter A, Bertschinger HU, Stranzinger G, et al. A DNA polymorphism influencing (1,2) fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics. 2000;52(1–2):129–36.

Meijerink E, Fries R, Vögeli P, Masabanda J, Wigger G, Stricker C, et al. Two alpha(1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm Genome. 1997;8(10):736–41.

Vögeli P, Bertschinger HU, Stamm M, Stricker C, Hagger C, Fries R, et al. Genes specifying receptors for F18 fimbriated Escherichia coli, causing oedema disease and postweaning diarrhoea in pigs, map to chromosome 6. Anim Genet. 1996;27(5):321–8.

Liu L, Wang J, Zhao Q, Zi C, Wu Z, Su X, et al. Genetic variation in exon 10 of the BPI gene is associated with Escherichia coli F18 susceptibility in Sutai piglets. Gene. 2013;523(1):70–5.

Bao WB, Wu SL, Musa HH, Zhu GQ, Chen GH. Genetic variation at the alpha-1-fucosyltransferase (FUT1) gene in Asian wild boar and Chinese and Western commercial pig breeds. J Anim Breed Genet. 2008;125(6):427–30.

Sørensen MT, Vestergaard EM, Jensen SK, Lauridsen C, Højsgaard S. Performance and diarrhoea in piglets following weaning at seven weeks of age: challenge with E. coli O 149 and effect of dietary factors. Livest Sci. 2009;123(2–3):314–21.

Sugiharto S, Jensen BB, Hedemann MS, Lauridsen C. Comparison of casein and whey in diets on performance, immune responses and metabolomic profile of weanling pigs challenged with Escherichia coli F4. Can J Anim Sci. 2014;94(3):479–91.

Nadeau É, Fairbrother JM, Zentek J, Bélanger L, Tremblay D, Tremblay CL, et al. Efficacy of a single oral dose of a live bivalent E. coli vaccine against post-weaning diarrhea due to F4 and F18-positive enterotoxigenic E. coli. Vet J. 2017;226:32–9.

Sargeant HR, McDowall KJ, Miller HM, Shaw MA. Dietary zinc oxide affects the expression of genes associated with inflammation: transcriptome analysis in piglets challenged with ETEC K88. Vet Immunol Immunopathol. 2010;137(1–2):120–9.

Yang GY, Zhu YH, Zhang W, Zhou D, Zhai CC, Wang JF. Influence of orally fed a select mixture of Bacillus probiotics on intestinal T-cell migration in weaned MUC4 resistant pigs following Escherichia coli challenge. Vet Res. 2016;47(1):71.

Zhang W, Zhu YH, Zhou D, Wu Q, Song D, Dicksved J, et al. Oral administration of a select mixture of bacillus probiotics affects the gut microbiota and goblet cell function following escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be Enterotoxigenic E. coli F4ab/ac receptor negative. Appl Environ Microbiol. 2017;83(3):e02747–16.

Zhou D, Zhu YH, Zhang W, Wang ML, Fan WY, Song D, et al. Oral administration of a select mixture of Bacillus probiotics generates Tr1 cells in weaned F4ab/acR- pigs challenged with an F4+ ETEC/VTEC/EPEC strain. Vet Res. 2015;46:95.

Jensen GM, Frydendahl K, Svendsen O, Jørgensen CB, Cirera S, Fredholm M, et al. Experimental infection with Escherichia coli O149:F4ac in weaned piglets. Vet Microbiol. 2006;115(1–3):243–9.

Verdonck F, Cox E, Van Gog K, Van der Stede Y, Duchateau L, Deprez P, et al. Different kinetic of antibody responses following infection of newly weaned pigs with an F4 enterotoxigenic Escherichia coli strain or an F18 verotoxigenic Escherichia coli strain. Vaccine. 2002;20(23–24):2995–3004.

Tiels P, Verdonck F, Coddens A, Goddeeris B, Cox E. The excretion of F18+ E. coli is reduced after oral immunisation of pigs with a FedF and F4 fimbriae conjugate. Vaccine. 2008;26(17):2154–63.

Verdonck F, Tiels P, van Gog K, Goddeeris BM, Lycke N, Clements J, et al. Mucosal immunization of piglets with purified F18 fimbriae does not protect against F18+ Escherichia coli infection. Vet Immunol Immunopathol. 2007;120(3–4):69–79.

Cilieborg MS, Sangild PT, Jensen ML, Østergaard MV, Christensen L, Rasmussen SO, et al. α1,2-Fucosyllactose does not improve intestinal function or prevent Escherichia coli F18 diarrhea in newborn pigs. J Pediatr Gastroenterol Nutr. 2017;64(2):310–8.

Andersen AD, Cilieborg MS, Lauridsen C, Mørkbak AL, Sangild PT. Supplementation with Lactobacillus paracasei or Pediococcus pentosaceus does not prevent diarrhoea in neonatal pigs infected with Escherichia coli F18. Br J Nutr. 2017;118(2):109–20.

Jensen ML, Cilieborg MS, Østergaard MV, Bering SB, Jørgensen CB, Sangild PT. Escherichia coli challenge in newborn pigs. J Anim Sci. 2012;90(Suppl 4):43–5.

Poulsen AR, Luise D, Curtasu MV, Sugiharto S, Canibe N, Trevisi P, et al. Effects of alpha-(1,2)-fucosyltransferase genotype variants on plasma metabolome, immune responses and gastrointestinal bacterial enumeration of pigs pre- and post-weaning. PLoS One. 2018;13(8):e0202970.

Luise D, Motta V, Bertocchi M, Salvarani C, Clavenzani P, Fanelli F, et al. Effect of Mucine 4 and Fucosyltransferase 1 genetic variants on gut homeostasis of growing healthy pigs. J Anim Physiol Anim Nutr. 2019;00:1–12.

Bao WB, Ye L, Pan ZY, Zhu J, Du ZD, Zhu GQ, et al. Microarray analysis of differential gene expression in sensitive and resistant pig to Escherichia coli F18. Anim Genet. 2012;43(5):525–34.

Hesselager MO, Everest-Dass AV, Thaysen-Andersen M, Bendixen E, Packer NH. FUT1 genetic variants impact protein glycosylation of porcine intestinal mucosa. Glycobiology. 2016;26(6):607–22.

Bao WB, Ye L, Pan ZY, Zhu J, Zhu GQ, Huang XG, et al. Beneficial genotype of swine FUT1 gene governing resistance to E. coli F18 is associated with important economic traits. J Genet. 2011;90(2):315–8.

Nguyen UV, Melkebeek V, Devriendt B, Goetstouwers T, Van Poucke M, Peelman L, et al. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae. Vet Res. 2015;46:72.

Rossi L, Dell’Orto V, Vagni S, Sala V, Reggi S, Baldi A. Protective effect of oral administration of transgenic tobacco seeds against verocytotoxic Escherichia coli strain in piglets. Vet Res Commun. 2014;38(1):39–49.

Vandamme K, Melkebeek V, Cox E, Remon JP, Vervaet C. Adjuvant effect of Gantrez®AN nanoparticle during oral vaccination of piglets against F4+enterotoxigenic Escherichia coli. Vet Immunol Immunopathol. 2011;139(2–4):148–55.

Kiers JL, Meijer JC, Nout MJ, Rombouts FM, Nabuurs MJ, van der Meulen J. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. J Appl Microbiol. 2003;95(3):545–52.

Luo Y, Van Nguyen U, de la Fe Rodriguez PY, Devriendt B, Cox E. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response. Vet Res. 2015;46:121.

Aguilera M, Cerdà-Cuéllar M, Martínez V. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice. Gut Microbes. 2015;6(1):10–23.

Bosi P, Casini L, Finamore A, Cremokolini C, Merialdi G, Trevisi P, et al. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J Anim Sci. 2004;82(6):1764–72.

Cox E, Schrauwen E, Cools V, Houvenaghel A. Experimental induction of diarrhoea in newly-weaned piglets. Zentralbl Veterinarmed A. 1991;38(6):418–26.

Hedegaard CJ, Lauridsen C, Heegaard PMH. Purified natural pig immunoglobulins can substitute dietary zinc in reducing piglet post weaning diarrhoea. Vet Immunol Immunopathol. 2017;186:9–14.

National Research Council (US) Institute for Laboratory Animal Research. Guidance for the description of animal research in scientific publications. In: Appendix, animal research: reporting in vivo experiments: The ARRIVE Guidelines. Washington (DC): National Academies Press (US); 2011. https://www.ncbi.nlm.nih.gov/books/NBK84204/ .

Carroll JA, Arthington JD, Chase CC Jr. Early weaning alters the acute-phase reaction to an endotoxin challenge in beef calves. J Anim Sci. 2009;87(12):4167–72.

Willemsen PT, de Graaf FK. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog. 1992;12(5):367–75.

Conway PL, Welin A, Cohen PS. Presence of K88-specific receptors in porcine ileal mucus is age dependent. Infect Immun. 1990;58(10):3178–82.

Gresse R, Chaucheyras-durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol. 2017;25(10):851–73.

Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science. 2013;339(6120):708–11.

Pluske JR, Dividich J, Verstegen MWA. Weaning the pig: concepts and consequences. Academic Publishers: Wageningen; 2003. https://lib.ugent.be/catalog/rug01:000909246 .

Kim SJ, Kwon CH, Park BC, Lee CY, Han JH. Effects of a lipid-encapsulated zinc oxide dietary supplement, on growth parameters and intestinal morphology in weanling pigs artificially infected with enterotoxigenic Escherichia coli. J Anim Sci Technol. 2015;57:4.

Hedegaard CJ, Strube ML, Hansen MB, Lindved BK, Lihme A, Boye M, et al. Natural pig plasma immunoglobulins have anti-bacterial effects: potential for use as feed supplement for treatment of intestinal infections in pigs. PLoS One. 2016;11(1):e0147373.

Zhang L, Xu YQ, Liu HY, Lai T, Ma JL, Wang JF, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol. 2010;141(1–2):142–8.

Niewold TA, Schroyen M, Geens MM, Verhelst RSB, Courtin CM. Dietary inclusion of arabinoxylan oligosaccharides (AXOS) down regulates mucosal responses to a bacterial challenge in a piglet model. J Funct Foods. 2012;4(3):625–35.

Capozzalo MM, Kim JC, Htoo JK, de Lange CF, Mullan BP, Hansen CF, et al. Effect of increasing the dietary tryptophan to lysine ratio on plasma levels of tryptophan, kynurenine and urea and on production traits in weaner pigs experimentally infected with an enterotoxigenic strain of Escherichia coli. Arch Anim Nutr. 2015;69(1):17–29.

Lee CY, Kim SJ, Park BC, Han JH. Effects of dietary supplementation of bacteriophages against enterotoxigenic Escherichia coli (ETEC) K88 on clinical symptoms of post-weaning pigs challenged with the ETEC pathogen. J Anim Physiol Anim Nutr. 2017;101(1):88–95.

Li XQ, Zhu YH, Zhang HF, Yue Y, Cai ZX, Lu QP, et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances. PLoS One. 2012;7(7):e40666.

Liu P, Piao XS, Thacker PA, Zeng ZK, Li PF, Wang D, et al. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J Anim Sci. 2010;88(12):3871–9.

Li H, Zhao P, Lei Y, Li T, Kim I. Response to an Escherichia coli K88 oral challenge and productivity of weanling pigs receiving a dietary nucleotides supplement. J Anim Sci Biotechnol. 2015;6:49.

Badia R, Lizardo R, Martinez P, Badiola I, Brufau J. The influence of dietary locust bean gum and live yeast on some digestive immunological parameters of piglets experimentally challenged with Escherichia coli. J Anim Sci. 2012;90(Suppl 4):260–2.

Stokes CR, Bailey M, Haverson K, Harris C, Jones P, Inman C, et al. Postnatal development of intestinal immune system in piglets: implications for the process of weaning. Anim Res. 2004;53(4):325–34.

Molist F, Manzanilla EG, Pérez JF, Nyachoti CM. Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:Bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. Br J Nutr. 2012;108(1):9–15.

Capozzalo MM, Kim JC, Htoo JK, De Lange CFM, Mullan BP, Hansen CF, et al. Pigs experimentally infected with an enterotoxigenic strain of Escherichia coli have improved feed efficiency and indicators of inflammation with dietary supplementation of tryptophan and methionine in the immediate post-weaning period. Anim Prod Sci. 2017;57(5):935–47.

Huang G, Li X, Lu D, Liu S, Suo X, Li Q, et al. Lysozyme improves gut performance and protects against enterotoxigenic Escherichia coli infection in neonatal piglets. Vet Res. 2018;49(1):20.

Zúñiga A, Yokoyama H, Albicker-Rippinger P, Eggenberger E, Bertschinger HU. Reduced intestinal colonisation with F18-positive enterotoxigenic Escherichia coli in weaned pigs fed chicken egg antibody against the fimbriae. FEMS Immunol Med Microbiol. 1997;18(3):153–61.

Yokoyama H, Hashi T, Umeda K, Icatlo FC Jr, Kuroki M, Ikemori Y, et al. Effect of oral egg antibody in experimental F18+ Escherichia coli infection in weaned pigs. J Vet Med Sci. 1997;59(10):917–21.

Pan L, Zhao PF, Ma XK, Shang QH, Xu YT, Long SF, et al. Probiotic supplementation protects weaned pigs against enterotoxigenic Escherichia coli K88 challenge and improves performance similar to antibiotics. J Anim Sci. 2017;95(6):2627–39.

Trevisi P, Melchior D, Mazzoni M, Casini L, De Filippi S, Minieri L, et al. A tryptophan-enriched diet improves feed intake and growth performance of susceptible weanling pigs orally challenged with Escherichia coli K88. J Anim Sci. 2009;87(1):148–56.

Pieper R, Janczyk P, Urubschurov V, Hou Z, Korn U, Pieper B, et al. Effect of Lactobacillus plantarum on intestinal microbial community composition and response to enterotoxigenic Escherichia coli challenge in weaning piglets. Livest Sci. 2010;133(1–3):98–100.

Hedemann MS, Bach Knudsen KE. A diet containing dried chicory root does not protect against post-weaning diarrhoea in an E. coli challenge model using piglets weaned at 7 weeks of age. Livest Sci. 2010;133(1–3):232–5.

Hanneman SK, Jesurum-Urbaitis JT, Bickel DR. Comparison of methods of temperature measurement in swine. Lab Anim. 2004;38(3):297–306.

Sund-Levander M, Grodzinsky E. Time for a change to assess and evaluate body temperature in clinical practice. Int J Nurs Pract. 2009;15(4):241–9.

Fairbrother JM, Gyles CL. Colibacillosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Disease of swine. 10th ed; 2012. p. 723–47.

Byun JW, Jung BY, Kim HY, Fairbrother JM, Lee MH, Lee WK. Real-time PCR for differentiation of F18 variants among enterotoxigenic and Shiga toxin-producing Escherichia coli from piglets with diarrhoea and oedema disease. Vet J. 2013;198:538–40.

Khac HV, Holoda E, Pilipcinec E, Blanco M, Blanco JE, Mora A, et al. Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhoea in Slovakia. BMC Vet Res. 2006;20:2–10.

Gaskins HR. Immunological development and mucosal defense in the pig intestine. In: Wiseman J, Varley MA, Chadwick JP, editors. Progress in pig science. Nottingham: University Press; 1998. p. 81–101.

Inamine T. Immunoglobulin A and liver diseases. J Gastroenterol. 2018;53(6):691–700.

Van den Broeck W, Cox E, Goddeeris BM. Receptor-dependent immune responses in pigs after oral immunization with F4 fimbriae. Infect Immun. 1999;67(2):520–6.

Bosi P, Merialdi G, Sarli G, Casini L, Gremokolini C, Preziosi R, et al. Effects of doses of ZnO or Zn-glutamate on growth performance, gut characteristics, health and immunity of early-weaned pigs orally challenged with E. coli K88. Ital J Anim Sci. 2003;2(1):361–3.

Bosi P, Sarli G, Casini L, De Filippi S, Trevisi P, Mazzoni M, et al. The influence of fat protection of calcium formate on growth and intestinal defence in Escherichia coli K88-challenged weanling pigs. Anim Feed Sci Tech. 2007;139(3–4):170–85.

Di Genova G, Savelyeva N, Suchacki A, Thirdborough SM, Stevenson FK. Bystander stimulation of activated CD4þ T cells of unrelated specificity following a booster vaccination with tetanus toxoid. Eur J Immunol. 2010;40(4):976–85.

Seo S, Yoo SJ, Sunwoo S, Hyun B, Lyoo YS. Cross-reactivity of porcine immunoglobulin a antibodies with fecal immunoglobulins of wild boar (Sus scrofa) and other animal species. Immune Netw. 2016;16(3):195–9.

Everett LM, Palestrant D, Miller SE, Bollinger RR, Parker W. Immune exclusion and immune inclusion : a new model of host-bacterial interactions in the gut. Clin Appl Immunol Rev. 2004;4(5):321–32.

Thompson CL, Wang B, Holmes AJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2008;2:739–48.

Kaetzel CS. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor , and the gut microbiota promotes host – microbial mutualism. Immunol Lett. 2014;162:10–21.

Gerber PF, Opriessnig T. Detection of immunoglobulin (Ig) a antibodies against porcine epidemic diarrhea virus ( PEDV ) in fecal and serum samples. MethodsX. 2015;13(2):368–73.

Trevisi P, Casini L, Coloretti F, Mazzoni M, Merialdi G, Bosi P. Dietary addition of Lactobacillus rhamnosus GG impairs the health of Escherichia coli F4-challenged piglets. Animal. 2011;5:1354–60.

Casini L, Bosi P, Gremokolini C, Trevisi P, Mazzoni M, Bonilauri P. Oral challenge with E. coli K88 as a tool to assess growth and health performance in feeding trials of-weaned pigs. Ita J Anim Sci. 2003;2(sup 1):358–60.

Bosi P, Gremokolini C, Trevisi P, Mazzoni M, Bonilauri P, Sarli G, et al. La stimulation orale par E. coli K88 comme méthode d’évaluation des performances de croissance et de l’état de santé des porce- lets sevrés dans les études expérimentales en alimentation. Journées Recherche Porcine. 2004;36:125–32.

Sugiharto, Jensen BB, Lauridsen C. Development of an ex vivo model for investigating the bacterial association to the gut epithelium of pigs. J Anim Sci. 2012;90(4):397–9.

Trevisi P, Corrent E, Messori S, Casini L, Bosi P. Healthy newly weaned pigs require more tryptophan to maximize feed intake if they are susceptible to Escherichia coli K88. Livest Sci. 2010;134(1–3):236–8.

Konstantinov SR, Smidt H, Akkermans AD, Casini L, Trevisi P, Mazzoni M, et al. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol Ecol. 2008;66(3):599–607.