Kim loại trong Vi tảo lam: Phân tích các cơ chế của đồng, niken, cobalt và asen
Tóm tắt
Các dấu vết kim loại là cần thiết cho các quá trình sinh hóa cơ bản, như quang hợp và hô hấp. Cân bằng kim loại của vi tảo lam giữ vai trò quan trọng vì máy quang hợp yêu cầu một lượng lớn kim loại, khiến chúng trở thành yếu tố hạn chế đối với vi tảo lam, đặc biệt là ở các đại dương mở. Mặt khác, trong hai thế kỷ qua, nồng độ kim loại trong môi trường biển và trầm tích hồ đã tăng lên do một số hoạt động công nghiệp. Trong tất cả các trường hợp, tế bào phải điều chỉnh việc hấp thụ một cách chặt chẽ để duy trì nồng độ nội bào dưới ngưỡng độc hại. Các cơ chế để thu hoạch kim loại trong điều kiện hạn chế và bảo vệ tế bào khỏi lượng kim loại dư thừa đều có mặt ở vi tảo lam. Hiểu biết về sự cân bằng kim loại trong vi tảo lam và các protein tham gia sẽ giúp đánh giá việc sử dụng những vi sinh vật này trong việc khử độc kim loại. Hơn nữa, điều này cũng sẽ giúp hiểu cách mà tính khả dụng của kim loại ảnh hưởng đến sản xuất sơ cấp trong đại dương. Trong bài tổng quan này, chúng tôi sẽ tập trung vào sự trao đổi đồng, niken, cobalt và asen (một loại kim loại độc) , mà chủ yếu đã được phân tích ở loài vi tảo lam mô hình Synechocystis sp. PCC 6803.
Từ khóa
#Kim loại #Vi tảo lam #Cân bằng kim loại #Đồng #Niken #Cobalt #Asen #BioremediationTài liệu tham khảo
Waldron, 2009, How do bacterial cells ensure that metalloproteins get the correct metal?, Nat. Rev. Microbiol., 7, 25, 10.1038/nrmicro2057
Cvetkovic, 2010, Microbial metalloproteomes are largely uncharacterized, Nature, 466, 779, 10.1038/nature09265
Waldron, 2010, Structure and metal loading of a soluble periplasm cuproprotein, J. Biol. Chem., 285, 32504, 10.1074/jbc.M110.153080
2005, Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications, J. Environ. Manag., 77, 1, 10.1016/j.jenvman.2005.01.023
Peng, 2009, The remediation of heavy metals contaminated sediment, J. Hazard. Mater., 161, 633, 10.1016/j.jhazmat.2008.04.061
Shcolnick, 2006, Metal Homeostasis in Cyanobacteria and Chloroplasts. Balancing Benefits and Risks to the Photosynthetic Apparatus, Plant Physiol., 141, 805, 10.1104/pp.106.079251
Mehta, 2014, Proteomic pattern alterations of the cyanobacterium Synechocystis sp. PCC 6803 in response to cadmium, nickel and cobalt, J. Proteomics, 102, 98, 10.1016/j.jprot.2014.03.002
Pereira, 2011, Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: Do cations compete for the EPS functional groups and also accumulate inside the cell?, Microbiology, 157, 451, 10.1099/mic.0.041038-0
Burnat, M., Diestra, E., Esteve, I., and Solé, A. (2009). In Situ Determination of the Effects of Lead and Copper on Cyanobacterial Populations in Microcosms. PLoS One, 4.
Merchant, 2012, Chapter 2—Elemental Economy: Microbial Strategies for Optimizing Growth in the Face of Nutrient Limitation, Advances in Microbial Physiology, Volume 60, 91, 10.1016/B978-0-12-398264-3.00002-4
Jordan, 2001, Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909, 10.1038/35082000
Barnett, J.P., Millard, A., Ksibe, A., Scanlan, D.J., Schmid, R., and Blindauer, C.A. (2012). Mining genomes of cyanobacteria for elements of zinc homeostasis. Front. Microbiol., 3.
Dupont, 2012, Genetic Identification of a High-Affinity Ni Transporter and the Transcriptional Response to Ni Deprivation in Synechococcus sp. Strain WH8102, Appl. Environ. Microbiol., 78, 7822, 10.1128/AEM.01739-12
Mann, 2002, Copper toxicity and cyanobacteria ecology in the Sargasso Sea, Limnol. Oceanogr., 47, 976, 10.4319/lo.2002.47.4.0976
Twining, 2013, The trace metal composition of marine phytoplankton, Ann. Rev. Mar. Sci., 5, 191, 10.1146/annurev-marine-121211-172322
Trick, 1992, Isolation and purification of siderophores produced by cyanobacteria, Synechococcus sp. PCC 7942 and Anabaena variabilis ATCC 29413, Curr. Microbiol., 24, 241, 10.1007/BF01577326
Itou, 2001, Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19), Tetrahedron, 57, 9093, 10.1016/S0040-4020(01)00934-6
Sili, 2001, Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review, J. Appl. Phycol., 13, 293, 10.1023/A:1017590425924
Jittawuttipoka, T., Planchon, M., Spalla, O., Benzerara, K., Guyot, F., Cassier-Chauvat, C., and Chauvat, F. (2013). Multidisciplinary evidences that Synechocystis PCC 6803 exopolysaccharides operate in cell sedimentation and protection against salt and metal stresses. PLoS One, 8.
Micheletti, 2008, Sheathless mutant of Cyanobacterium Gloeothece sp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions, Appl. Environ. Microbiol., 74, 2797, 10.1128/AEM.02212-07
Huckle, 1993, Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions, Mol. Microbiol., 7, 177, 10.1111/j.1365-2958.1993.tb01109.x
Robinson, 2001, Microbial metallothioneins, Adv. Microb. Physiol., 44, 183, 10.1016/S0065-2911(01)44014-8
Turner, 1993, Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus, J. Biol. Chem., 268, 4494, 10.1016/S0021-9258(18)53636-X
Liu, 2004, A novel cyanobacterial SmtB/ArsR family repressor regulates the expression of a CPx-ATPase and a metallothionein in response to both Cu(I)/Ag(I) and Zn(II)/Cd(II), J. Biol. Chem., 279, 17810, 10.1074/jbc.M310560200
Liu, 2003, A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis, FEBS Lett., 542, 159, 10.1016/S0014-5793(03)00370-3
Florencio, 2000, A Gene Cluster Involved in Metal Homeostasis in the Cyanobacterium Synechocystis sp. Strain PCC 6803, J. Bacteriol., 182, 1507, 10.1128/JB.182.6.1507-1514.2000
Reyes, 2012, The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803, Plant Physiol., 159, 1806, 10.1104/pp.112.200659
Florencio, 2003, Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803, J. Bacteriol., 185, 5363, 10.1128/JB.185.18.5363-5371.2003
Rutherford, 1999, Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase, J. Biol. Chem., 274, 25827, 10.1074/jbc.274.36.25827
Thelwell, 1998, An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter, Proc. Natl. Acad. Sci. USA, 95, 10728, 10.1073/pnas.95.18.10728
Liu, 2005, A Zinc(II)/Lead(II)/Cadmium(II)-Inducible Operon from the Cyanobacterium Anabaena Is Regulated by AztR, an α3N ArsR/SmtB Metalloregulator, Biochemistry, 44, 8673, 10.1021/bi050450+
Stuart, 2009, Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains, Appl. Environ. Microbiol., 75, 5047, 10.1128/AEM.00271-09
Yu, 2013, Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory, Mar. Drugs, 11, 2894, 10.3390/md11082894
Blindauer, 2008, Zinc-Handling in Cyanobacteria: An Update, Chem. Biodivers., 5, 1990, 10.1002/cbdv.200890183
Rensing, 2003, Escherichia coli mechanisms of copper homeostasis in a changing environment, FEMS Microbiol. Rev., 27, 197, 10.1016/S0168-6445(03)00049-4
Osman, 2008, Copper homeostasis in bacteria, Adv. Appl. Microbiol., 65, 217, 10.1016/S0065-2164(08)00608-4
Rademacher, 2012, Copper-responsive gene regulation in bacteria, Microbiology, 158, 2451, 10.1099/mic.0.058487-0
Macomber, 2009, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, Proc. Natl. Acad. Sci. USA, 106, 8344, 10.1073/pnas.0812808106
Chillappagari, 2010, Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis, J. Bacteriol., 192, 2512, 10.1128/JB.00058-10
Tottey, 2012, Cyanobacterial metallochaperone inhibits deleterious side reactions of copper, Proc. Natl. Acad. Sci. USA, 109, 95, 10.1073/pnas.1117515109
Giner-Lamia, J., López-Maury, L., and Florencio, F.J. (2014). Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS One, 9.
Macomber, 2007, Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli, J. Bacteriol., 189, 1616, 10.1128/JB.01357-06
Tottey, 2001, Two Menkes-type atpases supply copper for photosynthesis in Synechocystis. PCC 6803, J. Biol. Chem., 276, 19999, 10.1074/jbc.M011243200
Tottey, 2002, A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition, J. Biol. Chem., 277, 5490, 10.1074/jbc.M105857200
Kanamaru, 1994, A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942, Mol. Microbiol., 13, 369, 10.1111/j.1365-2958.1994.tb00430.x
Raimunda, 2010, Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa, Mol. Microbiol., 78, 1246, 10.1111/j.1365-2958.2010.07402.x
Raimunda, 2011, The transport mechanism of bacterial Cu+-ATPases: Distinct efflux rates adapted to different function, BioMetals, 24, 467, 10.1007/s10534-010-9404-3
Stengel, 2012, Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis, Plant Cell, 24, 660, 10.1105/tpc.111.093914
Schottkowski, 2009, Interaction of the periplasmic PratA factor and the PsbA (D1) protein during biogenesis of photosystem II in Synechocystis sp. PCC 6803, J. Biol. Chem., 284, 1813, 10.1074/jbc.M806116200
Rengstl, 2011, An intermediate membrane subfraction in cyanobacteria is involved in an assembly network for Photosystem II biogenesis, J. Biol. Chem., 286, 21944, 10.1074/jbc.M111.237867
Waldron, 2007, A periplasmic iron-binding protein contributes toward inward copper supply, J. Biol. Chem., 282, 3837, 10.1074/jbc.M609916200
Lutkenhaus, 1977, Role of a major outer membrane protein in Escherichia coli, J. Bacteriol., 131, 631, 10.1128/jb.131.2.631-637.1977
Speer, 2013, Porins increase copper susceptibility of Mycobacterium tuberculosis, J. Bacteriol., 195, 5133, 10.1128/JB.00763-13
Nicolaisen, 2010, The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, Biochim. Biophys. Acta, 1798, 2131, 10.1016/j.bbamem.2010.07.008
Moffett, 1996, Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress, Limnol. Oceanogr., 41, 388, 10.4319/lo.1996.41.3.0388
Stevanovic, 2013, The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability, BioMetals, 26, 549, 10.1007/s10534-013-9644-0
Duran, 2004, The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c6 or plastocyanin, J. Biol. Chem., 279, 7229, 10.1074/jbc.M311565200
Zhang, 1992, Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803, J. Biol. Chem., 267, 19054, 10.1016/S0021-9258(18)41739-5
Briggs, 1990, Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803, Plant Mol. Biol., 15, 633, 10.1007/BF00017837
Navarro, 2002, An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c6 and plastocyanin, Bioelectrochemistry, 55, 41, 10.1016/S1567-5394(01)00136-0
Giner-Lamia, J., López-Maury, L., and Florencio, F.J. (2014). CopM is a novel copper binding protein involved in copper resistance in Synechocystis sp. PCC 6803. MicrobiologyOpen, in press.
Florencio, 2012, Redox control of copper homeostasis in cyanobacteria, Plant Signal. Behav., 7, 1712, 10.4161/psb.22323
Osanai, 2006, Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803, DNA Res., 13, 185, 10.1093/dnares/dsl010
Stuart, 2012, Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress, ISME J., 7, 1139, 10.1038/ismej.2012.175
Rodriguez, I.B., and Ho, T.-Y. (2014). Diel nitrogen fixation pattern of Trichodesmium: The interactive control of light and Ni. Sci. Rep., 4.
Collier, 1999, The marine cyanobacterium Synechococcus sp. WH7805 requires urease (urea amiohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: Molecular-Genetic and biochemical analysis of the enzyme, Microbiology, 145, 447, 10.1099/13500872-145-2-447
Quintero, 2000, Arginine catabolism in the cyanobacterium Synechocystis sp. Strain PCC 6803 involves the urea cycle and arginase pathway, J. Bacteriol., 182, 1008, 10.1128/JB.182.4.1008-1015.2000
Mitamura, 2000, Urea degradation by picophytoplankton in the euphotic zone of Lake Biwa, Limnology, 1, 19, 10.1007/s102010070025
Saito, 2014, Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers, Science, 345, 1173, 10.1126/science.1256450
Valladares, 2002, An ABC-type, high-affinity urea permease identified in cyanobacteria, Mol. Microbiol., 43, 703, 10.1046/j.1365-2958.2002.02778.x
McIntosh, 2011, The [NiFe]-Hydrogenase of the Cyanobacterium Synechocystis sp. PCC 6803 Works Bidirectionally with a Bias to H2 Production, J. Am. Chem. Soc., 133, 11308, 10.1021/ja203376y
Carrieri, 2011, The role of the bidirectional hydrogenase in cyanobacteria, Bioresour. Technol., 102, 8368, 10.1016/j.biortech.2011.03.103
Eckert, 2012, Genetic Analysis of the Hox Hydrogenase in the Cyanobacterium Synechocystis sp. PCC 6803 Reveals Subunit Roles in Association, Assembly, Maturation, and Function, J. Biol. Chem., 287, 43502, 10.1074/jbc.M112.392407
Gutekunst, 2014, The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions, J. Biol. Chem., 289, 1930, 10.1074/jbc.M113.526376
Oxelfelt, 2005, Analysis of the hupSL Operon of the Nonheterocystous Cyanobacterium Lyngbya majuscula CCAP 1446/4: Regulation of Transcription and Expression under a Light-Dark Regimen, Appl. Environ. Microbiol., 71, 4567, 10.1128/AEM.71.8.4567-4576.2005
Wunschiers, R., Batur, M., and Lindblad, P. (2003). Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria. BMC Microbiol., 3.
Zhang, 2014, The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity, J. Bacteriol., 196, 840, 10.1128/JB.01248-13
Khetkorn, W., Lindblad, P., and Incharoensakdi, A. (2012). Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J. Biol. Eng., 6.
Happe, 2000, Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena Variabilis ATCC 29413, J. Bacteriol., 182, 1624, 10.1128/JB.182.6.1624-1631.2000
Dupont, 2008, Diversity, function and evolution of genes coding for putative Ni-containing superoxide dismutases, Environ. Microbiol., 10, 1831, 10.1111/j.1462-2920.2008.01604.x
Suttisansanee, 2011, Structural Variation in Bacterial Glyoxalase I Enzymes: Investigation of the metalloenzyme glyoxalase I from clostridium acetobutylicum, J. Biol. Chem., 286, 38367, 10.1074/jbc.M111.251603
Kaur, C., Vishnoi, A., Ariyadasa, T.U., Bhattacharya, A., Singla-Pareek, S.L., and Sopory, S.K. (2013). Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I. Sci. Rep., 3.
Tanioka, 2009, Occurrence of Pseudovitamin B12 and Its Possible Function as the Cofactor of Cobalamin-Dependent Methionine Synthase in a Cyanobacterium Synechocystis sp. PCC6803, J. Nutr. Sci. Vitaminol., 55, 518, 10.3177/jnsv.55.518
Dupont, 2010, Nickel utilization in phytoplankton assemblages from contrasting oceanic regimes, Deep Sea Res. Part I Oceanogr. Res. Pap., 57, 553, 10.1016/j.dsr.2009.12.014
Zhang, Y., Rodionov, D., Gelfand, M., and Gladyshev, V. (2009). Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics, 10.
Rodionov, 2003, Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes, J. Biol. Chem., 278, 41148, 10.1074/jbc.M305837200
Hoffmann, 2006, Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803, FEBS J., 273, 4516, 10.1111/j.1742-4658.2006.05460.x
Eitinger, 2011, Canonical and ECF-type ATP-binding cassette importers in prokaryotes: Diversity in modular organization and cellular functions, FEMS Microbiol. Rev., 35, 3, 10.1111/j.1574-6976.2010.00230.x
Rodionov, 2006, Comparative and Functional Genomic Analysis of Prokaryotic Nickel and Cobalt Uptake Transporters: Evidence for a Novel Group of ATP-Binding Cassette Transporters, J. Bacteriol., 188, 317, 10.1128/JB.188.1.317-327.2006
Napolitano, 2012, Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120, J. Bacteriol., 194, 2426, 10.1128/JB.00090-12
Mirus, O., Strauss, S., Nicolaisen, K., von Haeseler, A., and Schleiff, E. (2009). TonB-dependent transporters and their occurrence in cyanobacteria. BMC Biol., 7.
An, 2009, Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition, Nucleic Acids Res., 37, 3442, 10.1093/nar/gkp198
Iwig, 2010, Coordinating intracellular nickel-metal-site structure-function relationships and the NikR and RcnR repressors, Nat. Prod. Rep., 27, 658, 10.1039/b906683g
Florencio, 2002, A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803, Mol. Microbiol., 43, 247, 10.1046/j.1365-2958.2002.02741.x
Patterson, 2013, Co(ll)-detection does not follow Kco(ll) gradient: Channelling in Co(ll)-sensing, Metallomics, 5, 352, 10.1039/c3mt20241k
Foster, 2012, Cytosolic Ni(II) Sensor in Cyanobacterium: Nickel Detection Follows Nickel Affinity Across Four Families of Metal Sensors, J. Biol. Chem., 287, 12142, 10.1074/jbc.M111.338301
Liu, 2007, CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator, Nat. Chem. Biol., 3, 60, 10.1038/nchembio844
Foster, 2014, Metal-specificity of cyanobacterial nickel-responsive repressor InrS: Cells maintain zinc and copper below the detection-threshold for InrS, Mol. Microbiol., 92, 797, 10.1111/mmi.12594
Nordstrom, 2002, Public health. Worldwide occurrences of arsenic in ground water, Science, 296, 2143, 10.1126/science.1072375
Tawfik, 2011, Arsenate replacing phosphate: Alternative life chemistries and ion promiscuity, Biochemistry, 50, 1128, 10.1021/bi200002a
Fekry, 2011, Kinetic Consequences of Replacing the Internucleotide Phosphorus Atoms in DNA with Arsenic, ACS Chem. Biol., 6, 127, 10.1021/cb2000023
Kamerlin, 2013, Why nature really chose phosphate, Q. Rev. Biophys., 46, 1, 10.1017/S0033583512000157
Liu, 2002, Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9, Proc. Natl. Acad. Sci. USA, 99, 6053, 10.1073/pnas.092131899
Meng, 2004, As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli, J. Biol. Chem., 279, 18334, 10.1074/jbc.M400037200
Wysocki, 2001, The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae, Mol. Microbiol., 40, 1391, 10.1046/j.1365-2958.2001.02485.x
Bernstam, 2000, Molecular aspects of arsenic stress, J. Toxicol. Environ. Health B Crit. Rev., 3, 293, 10.1080/109374000436355
Oremland, 2005, A Microbial Arsenic Cycle in a Salt-Saturated, Extreme Environment, Science, 308, 1305, 10.1126/science.1110832
Kulp, 2008, Arsenic(III) Fuels Anoxygenic Photosynthesis in Hot Spring Biofilms from Mono Lake, California, Science, 321, 967, 10.1126/science.1160799
Nitschke, 2013, Arsenics as bioenergetic substrates, Biochim. Biophys. Acta, 1827, 176, 10.1016/j.bbabio.2012.08.007
Ye, 2012, Arsenic biomethylation by photosynthetic organisms, Trends Plant Sci., 17, 155, 10.1016/j.tplants.2011.12.003
Thomas, 2007, Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals, Exp. Biol. Med., 232, 3
Sánchez-Riego, A.M., López-Maury, L., and Florencio, F.J. (2014). Genomic Responses to Arsenic in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS One, 9.
Hervas, 2012, ArsH from the cyanobacterium Synechocystis sp. PCC 6803 is an efficient NADPH-dependent quinone reductase, Biochemistry, 51, 1178, 10.1021/bi201904p
Xue, 2014, ArsH from Synechocystis sp. PCC 6803 reduces chromate and ferric iron, FEMS Microbiol. Lett., 356, 105, 10.1111/1574-6968.12481
Reyes, 2009, The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803, J. Bacteriol., 191, 3534, 10.1128/JB.01798-08
Yin, 2011, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria, Plant Physiol., 156, 1631, 10.1104/pp.111.178947
Pandey, 2012, Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress, J. Proteomics, 75, 921, 10.1016/j.jprot.2011.10.011
Bhattacharya, 2011, Response of cyanobacteria to arsenic toxicity, J. Appl. Phycol., 23, 293, 10.1007/s10811-010-9617-4
Li, 2003, An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics, J. Bacteriol., 185, 6780, 10.1128/JB.185.23.6780-6789.2003
Roos, 2009, Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange, J. Biol. Chem., 284, 15107, 10.1074/jbc.M900877200
Messens, 2006, Arsenate reduction: Thiol cascade chemistry with convergent evolution, J. Mol. Biol., 362, 1, 10.1016/j.jmb.2006.07.002
Scanlan, 2009, Ecological genomics of marine picocyanobacteria, Microbiol. Mol. Biol. Rev., 73, 249, 10.1128/MMBR.00035-08
Navarro, 1996, The cyanobacterial thioredoxin gene is required for both photoautotrophic and heterotrophic growth, Plant Physiol., 111, 1067, 10.1104/pp.111.4.1067
Muller, 1989, Thioredoxin is essential for photosynthetic growth. The thioredoxin m gene of Anacystis nidulans, J. Biol. Chem., 264, 4008, 10.1016/S0021-9258(19)84953-0
Rosen, 1999, Families of arsenic transporters, Trends Microbiol., 7, 207, 10.1016/S0966-842X(99)01494-8
Bobrowicz, 1997, Isolation of Three Contiguous Genes, ACR1, ACR2 and ACR3, Involved in Resistance to Arsenic Compounds in the Yeast Saccharomyces cerevisiae, Yeast, 13, 819, 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO;2-Y
Indriolo, 2010, A Vacuolar Arsenite Transporter Necessary for Arsenic Tolerance in the Arsenic Hyperaccumulating Fern Pteris vittata is Missing in Flowering Plants, Plant Cell Online, 22, 2045, 10.1105/tpc.109.069773
Wurl, 2013, Arsenic and phosphorus biogeochemistry in the ocean: Arsenic species as proxies for P-limitation, Limnol. Oceanogr., 58, 729, 10.4319/lo.2013.58.2.0729
Zhang, 2014, Cyanobacteria-Mediated Arsenic Redox Dynamics is Regulated by Phosphate in Aquatic Environments, Environ. Sci. Technol., 48, 994, 10.1021/es403836g
Yin, 2012, Accumulation and Transformation of Arsenic in the Blue-Green Alga Synechocysis sp. PCC 6803, Water Air Soil Pollut., 223, 1183, 10.1007/s11270-011-0936-0
Pitt, 2010, Functional characterization of Synechocystis sp. strain PCC 6803 pst1 and pst2 gene clusters reveals a novel strategy for phosphate uptake in a freshwater cyanobacterium, J. Bacteriol., 192, 3512, 10.1128/JB.00258-10
Dyhrman, S.T., and Haley, S.T. (2011). Arsenate Resistance in the Unicellular Marine Diazotroph Crocosphaera watsonii. Front. Microbiol., 2.
Takahashi, 1990, Effects of phosphate on arsenate inhibition in a marine cyanobacterium, Phormidium sp., Appl. Organomet. Chem., 4, 269, 10.1002/aoc.590040316
Takahashi, 2001, Some characteristics of arsenate transport in a marine cyanobacterium, Synechococcus sp., Appl. Organomet. Chem., 15, 291, 10.1002/aoc.144
Thiel, 1988, Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis, J. Bacteriol., 170, 1143, 10.1128/jb.170.3.1143-1147.1988
Markley, C.T. (2004). Arsenate uptake, sequestration and reduction by a freshwater cyanobacterium: A potential biologic control of arsenic in South Texas. [Master’s Thesis, Texas A&M University].
Elias, 2012, The molecular basis of phosphate discrimination in arsenate-rich environments, Nature, 491, 134, 10.1038/nature11517
Wysocki, 2003, Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p, Biochem. Biophys. Res. Commun., 304, 293, 10.1016/S0006-291X(03)00584-9
Harada, 2004, A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity, Phytochemistry, 65, 3179, 10.1016/j.phytochem.2004.09.017