Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments

Journal of the Royal Society Interface - Tập 9 Số 68 - Trang 401-419 - 2012
Viviana Mouriño1,2, Juan Pablo Cattalini2, Aldo R. Boccaccını3
1CONICET, 1917 Rivadavia Avenue, Buenos Aires CP C1033AAJ, Argentina
2Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín Street, Sixth Floor, Buenos Aires CP1113, Argentina
3Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany

Tóm tắt

This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted.

Từ khóa


Tài liệu tham khảo

10.1126/science.8493529

10.1115/1.2891228

10.1163/156856201744489

10.1016/j.addr.2007.04.001

10.1016/j.addr.2007.03.011

10.1016/j.addr.2007.03.020

10.1016/j.addr.2007.03.017

10.1016/j.addr.2007.03.019

10.1016/j.addr.2007.03.014

10.1016/j.addr.2007.03.016

10.1016/j.addr.2007.03.018

10.1098/rsif.2009.0379

10.1039/C1SM05331K

10.1016/S1369-7021(08)70086-5

10.1002/jps.21528

10.1016/j.biomaterials.2006.01.039

10.1002/0470864052

10.1016/j.actbio.2011.03.027

10.1016/j.biomaterials.2009.10.009

10.1016/S0300-595X(85)80013-X

10.1016/j.matchemphys.2005.06.045

10.1016/S1387-1811(00)00217-1

10.1023/A:1008811501734

10.1016/S0142-9612(99)00201-X

10.1016/S0021-9797(03)00083-3

10.1016/j.colsurfa.2006.04.012

10.1016/j.ajic.2004.05.002

10.1016/j.biomaterials.2003.10.078

Dueland R., 1982, Silver antibacterial bone cement, Clin. Orthop. Relat. Res., 169, 264, 10.1097/00003086-198209000-00038

10.1016/S0109-5641(96)80027-3

10.1016/j.biomaterials.2003.08.007

10.1016/j.biomaterials.2011.01.004

10.1007/s10856-009-3941-8

Davis R. R., 2010, Titanate particles as agents to deliver gold compounds to fibroblasts and monocytes, J. Biomed. Mater. Res. A, 93, 864, 10.1002/jbm.a.32407

10.1002/jbm.b.31402

10.1002/jbm.b.30823

10.1021/cm061797h

10.1073/pnas.73.2.604

10.1042/BST0361233

10.1007/BF02982602

10.1126/science.1083004

10.1016/S0889-857X(05)70111-3

10.1080/07315724.1993.10718327

10.1079/NRR19920013

10.1007/BF02992716

10.1002/jbm.a.32625

10.1016/j.actbio.2008.07.032

Guindy J. S., 2004, Corrosion at the marginal gap of implant-supported suprastructures and implant failure, Int. J. Oral Maxillofac. Implants, 19, 826

10.1128/EC.3.1.1-13.2004

10.1089/ten.tea.2007.0370

Di Nunzio S.& Verné E.. 2005 Process for the production of silver-containing prosthetic devices . PCT/EP2005/056391.

10.1039/b002753g

10.1089/107632702753503045

10.1016/j.ejps.2009.02.011

10.1002/jbm.10312

10.1016/0142-9612(96)87284-X

10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E

10.1016/j.cej.2007.07.083

10.1016/j.biomaterials.2006.07.003

10.1007/s10856-006-0434-x

10.1016/S0142-9612(03)00524-6

10.1002/(SICI)1097-4636(199910)47:1<18::AID-JBM3>3.0.CO;2-T

10.1039/a808679f

10.1016/j.biomaterials.2007.09.040

Castro C., 2005, Two-month ciprofloxacin implants for multibacterial bone infections, Eur. J. Pharm. Sci., 60, 401

10.1023/B:JMSM.0000046393.81449.a5

10.1023/B:JMSM.0000021092.03087.d4

10.1002/jbm.b.10485

10.1089/ten.2004.10.1316

10.1002/jbm.1268

10.1097/00002480-200201000-00004

10.1016/j.polymer.2005.05.068

10.1163/156856297X00588

10.1016/S0142-9612(02)00139-4

10.1002/biot.200600044

10.1016/j.biomaterials.2004.01.063

Tan K. H., 2005, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Biomed. Mater. Eng., 15, 113

10.1023/A:1013622216071

10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7

10.1108/13552540510573347

10.1016/S0142-9612(00)00121-6

10.1016/j.tibtech.2004.05.005

10.1016/S0142-9612(03)00030-9

10.1163/156856208784089571

10.22203/eCM.v005a03

10.1016/j.addr.2004.05.001

10.1016/j.tibtech.2004.10.004

10.1038/nmat1421

10.1208/s12249-009-9308-0

10.1111/j.1151-2916.1998.tb02540.x

10.1098/rsif.2010.0151.focus

10.1002/jab.770030208

10.1007/s100190000055

10.1006/bbrc.2000.3503

10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D

10.1089/ten.2004.10.1018

10.1089/ten.2005.11.479

10.1016/j.biomaterials.2003.07.001

10.1002/jbm.b.30249

10.1002/jbm.b.30455

10.1016/j.biomaterials.2004.01.043

10.1126/science.1067404

10.1089/ten.teb.2009.0416

10.1016/S1369-7021(09)70273-1

10.1016/j.biomaterials.2006.12.027

10.1016/S1748-0132(07)70171-8

Shanov V. et al. 2008 UC 108-091 invention disclosure composition and method for producing magnesium based biodegradable composite implants . Chichester UK: John Wiley & Sons Ltd.

Mast D. Shanov V. Jayasinghe C.& Schulz M.. 2008 UC 109-035 invention disclosure ‘use of carbon nanotube thread ribbon and arrays for the transmission and reception of electromagnetic signals and radiation’ . Chichester UK: John Wiley & Sons Ltd.

Schulz M. J et al. 2009 UC 109-085 invention disclosure corrosion measurement for biodegradable metal implants . Chichester UK: John Wiley & Sons Ltd.

Schulz M. J. Shanov V. N. Sankar J. Witte F. Wagner W. Borovetz H. Kumta P.& Sfeir C.. 2009 UC 109-111 invention disclosure permanent and biodegradable responsive implants that expand and adapt to the human body . Chichester UK: John Wiley & Sons Ltd.

Shanov V. et al. 2009 UC 109-089 invention disclosure composition and method for magnesium biodegradable material for medical implant applications . Chichester UK: John Wiley & Sons Ltd.

10.1016/j.cirp.2007.05.029

10.1088/0957-4484/18/46/465505

10.1088/1748-6041/4/2/025008

10.1016/j.biomaterials.2009.08.007

10.1002/adem.200980078

10.1098/rsif.2008.0348

10.1063/1.3076057

10.1083/jcb.109.3.1229

10.1016/j.ceca.2005.01.007

10.1016/j.neuron.2005.04.022

10.1016/j.jhsb.2004.11.003

10.1007/s10856-010-4083-8

10.1016/j.biomaterials.2005.01.006

10.1016/j.bone.2009.07.082

10.1088/1748-6041/4/4/045011

10.1254/jphs.94.215

10.1002/(SICI)1097-4636(200005)50:2<184::AID-JBM13>3.0.CO;2-3

10.1016/j.biomaterials.2010.01.083

10.1016/j.biomaterials.2005.01.043

10.1016/j.abb.2003.09.013

10.1634/stemcells.2006-0347

Loboda A., 2005, Heme oxygenase-1-dependent and -independent regulation of angiogenic genes expression: effect of cobalt protoporphyrin and cobalt chloride on VEGF and IL-8 synthesis in human microvascular endothelial cells, Cell Mol. Biol., 51, 347

10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A

10.1111/j.1600-0773.1986.tb02781.x

10.1016/j.mam.2005.07.010

Linder M. C., 1996, Copper biochemistry and molecular biology, Am. J. Clin. Nutr., 63, 797S

10.1016/S1040-8428(01)00225-6

10.1002/jcb.10111

10.1097/01.shk.0000068318.49350.3a

10.1016/j.biomaterials.2004.07.024

10.1021/bm049568g

10.1016/j.biomaterials.2004.08.027

10.1124/mol.108.051516

10.1021/bi051387r

10.1016/j.biomaterials.2009.10.009

10.1016/j.mehy.2007.06.006

10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A

10.1152/ajpheart.01015.2001

Parke A., 1998, Characterization and quantification of copper sulphate induced vascularization of the rabbit cornea, Am. J. Pathol., 130, 173

10.7326/0003-4819-113-11-847

Warrell R. P., 1985, Metabolic effects of gallium nitrate administered by prolonged infusion, Cancer Treat. Rep., 69, 653

10.1172/JCI111353

Bernstein L. R., 1998, Mechanisms of therapeutic activity for gallium, Pharmacol. Rev., 50, 665

10.1111/j.1476-5381.2010.00665.x

10.1016/j.actbio.2008.09.019

10.1161/01.ATV.0000190610.63878.20

10.1371/journal.pbio.0000079

10.1016/j.biomaterials.2003.10.013

10.1093/jn/134.1.79

10.1007/s00223-001-1091-1

10.1016/S0027-5107(01)00074-4

10.1002/jbm.10220

10.1016/S0142-9612(03)00414-9

10.1002/jbm.10270

10.1016/S0898-8838(08)60152-X

10.1016/S0165-0173(02)00234-5

Westenberg D., 2000, Proc. 100th General Meeting of the American Society for Microbiology

10.1002/(SICI)1097-4636(19970905)36:3<325::AID-JBM7>3.0.CO;2-G

10.1002/(SICI)1097-4636(19991215)47:4<516::AID-JBM7>3.0.CO;2-E

10.1002/(SICI)1097-4636(1999)48:3<277::AID-JBM11>3.0.CO;2-T

10.1002/1097-4636(200009)53:5<600::AID-JBM21>3.0.CO;2-D

10.1016/S0924-8579(00)00360-5

10.1002/(SICI)1097-4636(200002)49:2<192::AID-JBM6>3.0.CO;2-C

10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

10.1149/1.1838499

10.1039/b515219b

10.1002/jbmr.5650110915

10.1016/S8756-3282(01)00419-7

10.1016/8756-3282(95)00484-X

10.1007/s002230010055

10.1016/j.bbrc.2007.01.120

10.1007/s007750050265

10.1074/jbc.272.2.843

Posner B. I., 1994, Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics, J. Biol. Chem., 269, 4596, 10.1016/S0021-9258(17)41818-7

Crans D. C., 1998, Vanadium compounds: chemistry, biochemistry, and therapeutic applications,, 82, 10.1021/bk-1998-0711.ch006

10.1007/s007750050322

10.1016/S0162-0134(00)00033-7

10.1016/S0162-0134(00)00035-0

Scior T., 2010, Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B, Drug Des. Dev. Ther., 4, 231

10.1016/j.cclet.2008.07.002

10.1016/j.jinorgbio.2008.06.007

10.1007/s10529-004-7855-8

10.2147/DDDT.S3732

10.1053/meta.2001.23294

10.1007/s10534-007-9109-4

10.1093/jn/106.2.249

10.1007/BF01075934

10.1139/y06-021

10.1139/y06-022

10.1016/j.biocel.2005.12.007

10.1016/S0946-672X(97)80035-1

Barrio D. A., 2003, Synthesis of a new vanadyl(IV) complex with trehalose (TreVO): insulin-mimetic activities in osteoblast-like cells in culture, J. Biol. Metallic Chem., 8, 459

Etcheverry S. B., 2002, Three new vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs (Ibuprofen, Naproxen and Tolmetin). Bioactivity on osteoblast-like cells in culture, J. Metallic Biochem., 88, 94

10.1023/A:1013183910203

10.1016/0006-2952(88)90098-6

10.1016/S8756-3282(01)00616-0

10.1016/j.actbio.2009.04.006

10.1007/BF02783905

10.1523/JNEUROSCI.23-06-02284.2003

10.1093/jn/100.3.325

10.1007/s002239900597

10.1002/jbm.a.10524

10.1002/jbm.a.10041

10.1002/jbm.a.31214

10.1016/0006-2952(87)90471-0

10.1016/j.bone.2009.11.003

10.1016/j.neuint.2006.12.001

10.1152/ajplung.00280.2006

10.1016/S0924-8579(02)00115-2

10.1111/j.1524-475X.2006.00179.x

10.1016/j.actbio.2008.09.004

Chen X., 2010, Synthesis and characterization of novel multiphase bioactive glass–ceramics in the CaO–MgO–SiO2 system, J. Biomed. Mater. Res. B, 93, 194, 10.1002/jbm.b.31574

10.1016/j.msec.2008.07.004

10.1002/ejic.200390188

10.1088/1742-6596/187/1/012024

10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4

10.1128/AAC.46.6.1940-1945.2002

10.1177/0885328204043200

10.1007/s10856-011-4240-8

10.1016/j.actbio.2007.05.006

10.1007/s10856-009-3920-0

10.1016/j.biomaterials.2010.01.121

Zhang M. L., 2010, Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders, J. Biomed. Mater. Res. B Appl. Biomater., 93, 252, 10.1002/jbm.b.31582

10.1016/j.actbio.2010.12.018

10.22203/eCM.v021a11

10.1002/jbm.1247

10.1016/j.actbio.2006.09.005

10.1088/1748-6041/2/1/003

10.1007/s10856-006-8930-6

10.1016/j.actbio.2008.10.020

10.1007/s10856-009-3789-y

10.1016/j.biomaterials.2010.01.024

10.1016/j.actbio.2009.04.010

10.1007/s10856-008-3569-0

10.1385/BTER:106:2:123

10.1016/j.arth.2004.09.010