Metal organic framework based catalysts for CO2 conversion

Materials Horizons - Tập 4 Số 3 - Trang 345-361
James W. Maina1,2,3, Cristina Pozo‐Gonzalo1,2,3, Lingxue Kong1,2,3, Jürg A. Schütz1,4, Matthew R. Hill1,5,6, Ludovic F. Dumée1,2,3
1Australia
2Deakin University, Institute for Frontier Materials, 75 Pigdons Road, Waurn Ponds, Vic 3216, Australia
3Institute for Frontier Materials
4Commonwealth Scientific and Industrial Research Organization (CSIRO), 75 Pigdons Road, Waurn Ponds, Vic 3216, Australia
5Clayton
6Commonwealth Scientific and Industrial Research Organization (CSIRO), Research Way, Clayton, Vic 3168, Australia

Tóm tắt

Metal organic frameworks (MOFs) are hybrid crystalline materials, exhibiting high specific surface areas, controllable pore sizes and surface chemistry.

Từ khóa


Tài liệu tham khảo

Li, 2011, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012

McDonald, 2015, Nature, 519, 303, 10.1038/nature14327

Agarwal, 2011, ChemSusChem, 4, 1301, 10.1002/cssc.201100220

Goeppert, 2011, J. Am. Chem. Soc., 133, 20164, 10.1021/ja2100005

Lackner, 2009, Eur. Phys. J.: Spec. Top., 176, 93

Millward, 2005, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032

Maginn, 2010, J. Phys. Chem. Lett., 1, 3478, 10.1021/jz101582c

Qiao, 2014, Chem. Soc. Rev., 43, 631, 10.1039/C3CS60323G

Ola, 2015, J. Photochem. Photobiol., C, 24, 16, 10.1016/j.jphotochemrev.2015.06.001

Kothandaraman, 2016, J. Am. Chem. Soc., 138, 778, 10.1021/jacs.5b12354

Ren, 2015, Nano Lett., 15, 6142, 10.1021/acs.nanolett.5b02427

Grau-Crespo, 2016, Angew. Chem., Int. Ed., 55, 16012, 10.1002/anie.201609439

Pérez-Fortes, 2016, Appl. Energy, 161, 718, 10.1016/j.apenergy.2015.07.067

Beyzavi, 2015, Frontiers in Energy Research, 2, 63, 10.3389/fenrg.2014.00063

North, 2010, Green Chem., 12, 1514, 10.1039/c0gc00065e

Rahmani, 2012, J. Nat. Gas Sci. Eng., 7, 60, 10.1016/j.jngse.2012.04.001

Tu, 2014, Adv. Mater., 26, 4607, 10.1002/adma.201400087

Furukawa, 2013, Science, 341, 1230444, 10.1126/science.1230444

Wang, 2015, Small, 11, 3097, 10.1002/smll.201500084

Sun, 2013, Expert Opin. Drug Delivery, 10, 89, 10.1517/17425247.2013.741583

Khan, 2013, J. Hazard. Mater., 244–245, 444, 10.1016/j.jhazmat.2012.11.011

Shah, 2012, Ind. Eng. Chem. Res., 51, 2179, 10.1021/ie202038m

Li, 2014, Chem. – Asian J., 9, 1474, 10.1002/asia.201400031

Fong Yeong, 2014, J. Appl. Sci., 14, 1161, 10.3923/jas.2014.1161.1167

Zhang, 2015, J. Phys. Chem. Lett., 6, 3841, 10.1021/acs.jpclett.5b01602

Millward, 2005, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032

Beyzavi, 2015, Frontiers in Energy Research, 2, 63, 10.3389/fenrg.2014.00063

Wang, 2015, J. Mol. Struct., 1083, 127, 10.1016/j.molstruc.2014.11.036

Zhang, 2015, J. Mater. Chem. A, 3, 15764, 10.1039/C5TA03322E

He, 2016, Small, 12, 6309, 10.1002/smll.201602711

Kornienko, 2015, J. Am. Chem. Soc., 137, 14129, 10.1021/jacs.5b08212

Dhakshinamoorthy, 2016, Angew. Chem., Int. Ed., 55, 5414, 10.1002/anie.201505581

Morozan, 2012, Energy Environ. Sci., 5, 9269, 10.1039/c2ee22989g

Navarro Amador, 2016, Mater. Lett., 166, 327, 10.1016/j.matlet.2015.12.023

Li, 2016, Phys. Chem. Chem. Phys., 18, 7563, 10.1039/C5CP05885F

Zhang, 2014, Chem. Soc. Rev., 43, 5982, 10.1039/C4CS00103F

Zeng, 2016, ACS Catal., 6, 7935, 10.1021/acscatal.6b02228

Rosi, 2005, J. Am. Chem. Soc., 127, 1504, 10.1021/ja045123o

Palomino Cabello, 2016, ChemPlusChem, 81, 828, 10.1002/cplu.201600168

Yang, 2012, Energy Environ. Sci., 5, 6465, 10.1039/C1EE02234B

Lin, 2012, Int. J. Hydrogen Energy, 37, 13865, 10.1016/j.ijhydene.2012.04.105

Ma, 2015, J. Mater. Chem. A, 3, 23136, 10.1039/C5TA07026K

Gao, 2014, Angew. Chem., 53, 2615, 10.1002/anie.201309778

Chen, 2005, Angew. Chem., 117, 4823, 10.1002/ange.200462787

Beyzavi, 2014, J. Am. Chem. Soc., 136, 15861, 10.1021/ja508626n

Xu, 2015, J. Am. Chem. Soc., 137, 13440, 10.1021/jacs.5b08773

Zhou, 2015, J. Am. Chem. Soc., 137, 15066, 10.1021/jacs.5b07925

T. E. Synchrotron , Fast nucleation and growth of nanocrystals of a porous coordination polymer, http://www.esrf.eu/UsersAndScience/Publications/Highlights/2011/scm/scm2, accessed 12th Jan, 2017

Zhu, 2013, Catal. Commun., 32, 36, 10.1016/j.catcom.2012.12.003

U. O. Liverpool , MOF-5 (or IRMOF-1) Metal Organic Framework, http://www.chemtube3d.com/solidstate/MOF-MOF5.html, accessed 19th Jan, 2017

Lo, 2016, Dalton Trans., 45, 9565, 10.1039/C6DT01282E

Wang, 2014, ACS Catal., 4, 4254, 10.1021/cs501169t

Volkringer, 2008, Inorg. Chem., 47, 11892, 10.1021/ic801624v

Barthelet, 2004, Chem. Commun., 520, 10.1039/B312589K

Lescouet, 2012, ChemCatChem, 4, 1725, 10.1002/cctc.201200288

Li, 2016, J. Am. Chem. Soc., 138, 2142, 10.1021/jacs.5b13335

Han, 2016, Green Chem., 4086, 10.1039/C6GC00413J

Koh, 2008, Angew. Chem., Int. Ed., 47, 677, 10.1002/anie.200705020

Phan, 2010, Acc. Chem. Res., 43, 58, 10.1021/ar900116g

Panda, 2014, CrystEngComm, 16, 4677, 10.1039/C3CE42075B

Yang, 2014, J. Mol. Catal. A: Chem., 392, 278, 10.1016/j.molcata.2014.05.033

Howarth, 2016, Nat. Rev. Mater., 1, 15018, 10.1038/natrevmats.2015.18

DeCoste, 2013, J. Mater. Chem. A, 1, 5642, 10.1039/c3ta10662d

Burtch, 2014, Chem. Rev., 114, 10575, 10.1021/cr5002589

Tranchemontagne, 2009, Chem. Soc. Rev., 38, 1257, 10.1039/b817735j

Low, 2009, J. Am. Chem. Soc., 131, 15834, 10.1021/ja9061344

Yoshida, 2004, Chem. – Eur. J., 10, 2886, 10.1002/chem.200305583

Zhang, 2006, J. Power Sources, 162, 1379, 10.1016/j.jpowsour.2006.07.074

Martín, 2015, ACS Catal., 5, 1353, 10.1021/cs5018997

Peppel, 1958, Ind. Eng. Chem., 50, 767, 10.1021/ie50581a030

W. K. Cline , US Pat., 2667497, 1954

Jiang, 2016, Green Chem., 3567, 10.1039/C6GC00370B

Ema, 2014, J. Am. Chem. Soc., 136, 15270, 10.1021/ja507665a

Motokura, 2009, Green Chem., 11, 1876, 10.1039/b916764c

Ochiai, 2007, J. Polym. Sci., Part A: Polym. Chem., 45, 5673, 10.1002/pola.22316

Hajipour, 2015, RSC Adv., 5, 22373, 10.1039/C4RA16083E

Babu, 2016, Green Chem., 18, 232, 10.1039/C5GC01763G

Miralda, 2012, ACS Catal., 2, 180, 10.1021/cs200638h

Tharun, 2015, ChemPlusChem, 80, 715, 10.1002/cplu.201402395

Kathalikkattil, 2015, J. Mater. Chem. A, 3, 22636, 10.1039/C5TA05688H

Zalomaeva, 2013, J. Catal., 298, 179, 10.1016/j.jcat.2012.11.029

Cho, 2012, Catal. Today, 185, 35, 10.1016/j.cattod.2011.08.019

Huang, 2014, Chem. Commun., 50, 2624, 10.1039/C3CC49187K

Ren, 2013, RSC Adv., 3, 2167, 10.1039/c2ra22550f

Liu, 2016, Inorg. Chem., 55, 3558, 10.1021/acs.inorgchem.6b00050

Kim, 2013, Appl. Catal., A, 453, 175, 10.1016/j.apcata.2012.12.018

Van der Perre, 2014, Langmuir, 30, 8416, 10.1021/la501594t

Feng, 2013, J. Am. Chem. Soc., 135, 17105, 10.1021/ja408084j

Férey, 2005, Science, 309, 2040, 10.1126/science.1116275

Hwang, 2016, J. CO2 Util., 15, 123, 10.1016/j.jcou.2016.02.005

Mousavi, 2016, New J. Chem., 40, 5170, 10.1039/C6NJ00128A

Kleist, 2009, Eur. J. Inorg. Chem., 3552, 10.1002/ejic.200900509

Zhou, 2012, J. Mol. Catal. A: Chem., 361–362, 12, 10.1016/j.molcata.2012.04.008

Kim, 2013, J. Nanosci. Nanotechnol., 13, 2307, 10.1166/jnn.2013.6878

Sholl, 2015, J. Phys. Chem. Lett., 6, 3437, 10.1021/acs.jpclett.5b01135

Fang, 2015, Angew. Chem., Int. Ed., 54, 7234, 10.1002/anie.201411540

Chizallet, 2010, J. Am. Chem. Soc., 132, 12365, 10.1021/ja103365s

Schejn, 2015, Catal. Sci. Technol., 5, 1829, 10.1039/C4CY01505C

Kuruppathparambil, 2016, Appl. Catal., B, 182, 562, 10.1016/j.apcatb.2015.10.005

Ravon, 2010, Microporous Mesoporous Mater., 129, 319, 10.1016/j.micromeso.2009.06.008

Lu, 2014, Chem. Soc. Rev., 43, 5561, 10.1039/C4CS00003J

Gao, 2014, Chem. Commun., 50, 5316, 10.1039/C3CC47542E

Zhang, 2013, AIChE J., 59, 2195, 10.1002/aic.13970

Liang, 2017, Chem. Sci., 8, 1570, 10.1039/C6SC04357G

Taherimehr, 2016, ChemSusChem, 10.1002/cssc.201601768, n/a-n/a

Liu, 2013, J. Mater. Chem. A, 1, 11563, 10.1039/c3ta12433a

Zhao, 2012, Catal. Commun., 21, 32, 10.1016/j.catcom.2012.01.022

Horiuchi, 2012, J. Phys. Chem. C, 116, 20848, 10.1021/jp3046005

Silva, 2010, J. Mater. Chem., 20, 3141, 10.1039/b924937k

Pattengale, 2016, J. Am. Chem. Soc., 138, 8072, 10.1021/jacs.6b04615

Kanan, 2012, J. Phys. Chem. C, 116, 9876, 10.1021/jp300590d

Hamad, 2015, J. Mater. Chem. A, 3, 23458, 10.1039/C5TA06982C

Grau-Crespo, 2016, Angew. Chem., Int. Ed., 16012, 10.1002/anie.201609439

Fuentes-Cabrera, 2005, J. Chem. Phys., 123, 124713, 10.1063/1.2037587

Hendon, 2013, J. Am. Chem. Soc., 135, 10942, 10.1021/ja405350u

Butler, 2014, ACS Appl. Mater. Interfaces, 6, 22044, 10.1021/am507016r

Liang, 2013, Inorg. Chem., 52, 12878, 10.1021/ic4024234

Lee, 2015, Chem. Commun., 51, 5735, 10.1039/C5CC00686D

Nasalevich, 2016, Sci. Rep., 6, 23676, 10.1038/srep23676

Fu, 2012, Angew. Chem., 51, 3364, 10.1002/anie.201108357

Lee, 2015, Chem. Commun., 51, 16549, 10.1039/C5CC04506A

Li, 2014, Chem. Sci., 5, 3808, 10.1039/C4SC00940A

Wang, 2011, J. Am. Chem. Soc., 133, 13445, 10.1021/ja203564w

Liu, 2013, ACS Appl. Mater. Interfaces, 5, 7654, 10.1021/am4019675

Fan, 2010, J. Environ. Eng., 137, 171, 10.1061/(ASCE)EE.1943-7870.0000311

Fujihara, 2000, J. Photochem. Photobiol., A, 132, 99, 10.1016/S1010-6030(00)00204-5

Das, 2009, J. Phys. Chem. C, 113, 14783, 10.1021/jp9048956

Li, 2014, Adv. Mater., 26, 4783, 10.1002/adma.201400428

Sun, 2013, Chemistry, 19, 14279, 10.1002/chem.201301728

Chambers, 2015, ChemSusChem, 8, 603, 10.1002/cssc.201403345

Wang, 2014, Angew. Chem., Int. Ed., 53, 1034, 10.1002/anie.201309426

Li, 2012, Fuel Process. Technol., 100, 43, 10.1016/j.fuproc.2012.03.007

Huang, 2016, Eur. J. Inorg. Chem., 4358, 10.1002/ejic.201600064

Zhang, 2015, Environ. Sci. Technol., 49, 2405, 10.1021/es505301x

Hori, 1989, J. Chem. Soc., Faraday Trans. 1, 85, 2309, 10.1039/f19898502309

Hu, 2013, Beilstein J. Org. Chem., 9, 1977, 10.3762/bjoc.9.234

Han, 2013, Microporous Mesoporous Mater., 173, 86, 10.1016/j.micromeso.2013.02.002

Mounfield III, 2016, J. Phys. Chem. C, 120, 27230, 10.1021/acs.jpcc.6b09264

Bhattacharyya, 2016, J. Phys. Chem. C, 120, 27221, 10.1021/acs.jpcc.6b09197

Hori, 1994, Electrochim. Acta, 39, 1833, 10.1016/0013-4686(94)85172-7

Hori, 1985, Chem. Lett., 1695, 10.1246/cl.1985.1695

Frese, 1991, J. Electrochem. Soc., 138, 3338, 10.1149/1.2085411

Li, 2014, Nature, 508, 504, 10.1038/nature13249

Schouten, 2011, Chem. Sci., 2, 1902, 10.1039/c1sc00277e

Kim, 2014, Nat. Commun., 5, 4948, 10.1038/ncomms5948

Albo, 2015, Green Chem., 17, 2304, 10.1039/C4GC02453B

Gattrell, 2006, J. Electroanal. Chem., 594, 1, 10.1016/j.jelechem.2006.05.013

Hori, 2002, J. Phys. Chem. B, 106, 15, 10.1021/jp013478d

Kuhl, 2014, J. Am. Chem. Soc., 136, 14107, 10.1021/ja505791r

Hinogami, 2012, ECS Electrochem. Lett., 1, H17, 10.1149/2.001204eel

Jahan, 2013, Adv. Funct. Mater., 23, 5363, 10.1002/adfm.201300510

Wang, 2014, J. Mater. Chem. A, 2, 14064, 10.1039/C4TA01506A

Yang, 2015, Sens. Actuators, B, 215, 489, 10.1016/j.snb.2015.03.104

Xia, 2015, Energy Environ. Sci., 8, 1837, 10.1039/C5EE00762C

Maihom, 2013, J. Phys. Chem. C, 117, 17650, 10.1021/jp405178p

Senthil Kumar, 2012, Electrochem. Commun., 25, 70, 10.1016/j.elecom.2012.09.018

Hod, 2015, ACS Catal., 5, 6302, 10.1021/acscatal.5b01767

Aijaz, 2014, J. Am. Chem. Soc., 136, 6790, 10.1021/ja5003907

Zhao, 2014, ACS Nano, 8, 12660, 10.1021/nn505582e

Ghadimkhani, 2013, Chem. Commun., 49, 1297, 10.1039/c2cc38068d

Li, 2014, Nanoscale, 6, 11380, 10.1039/C4NR02902J