Metal-coordinated sub-10 nm membranes for water purification

Nature Communications - Tập 10 Số 1
Xinda You1, Hong Wu1, Runnan Zhang1, Yanlei Su1, Li Cao1, Qianqian Yu1, Jinqiu Yuan1, Ke Xiao2, Mingrui He2, Zhongyi Jiang2
1Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Tóm tắt

Abstract

Ultrathin membranes with potentially high permeability are urgently demanded in water purification. However, their facile, controllable fabrication remains a grand challenge. Herein, we demonstrate a metal-coordinated approach towards defect-free and robust membranes with sub-10 nm thickness. Phytic acid, a natural strong electron donor, is assembled with metal ion-based electron acceptors to fabricate metal-organophosphate membranes (MOPMs) in aqueous solution. Metal ions with higher binding energy or ionization potential such as Fe3+ and Zr4+ can generate defect-free structure while MOPM-Fe3+ with superhydrophilicity is preferred. The membrane thickness is minimized to 8 nm by varying the ligand concentration and the pore structure of MOPM-Fe3+ is regulated by varying the Fe3+ content. The membrane with optimized MOPM-Fe3+ composition exhibits prominent water permeance (109.8 L m−2 h−1 bar−1) with dye rejections above 95% and superior stability. This strong-coordination assembly may enlighten the development of ultrathin high-performance membranes.

Từ khóa


Tài liệu tham khảo

Lively, David,S. & Ryan, P. Seven chemical separations to change the world. Nature 532, 435 (2016).

Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

Santanu, K., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1352 (2015).

Song, W., Tu, Y.-M., Oh, H., Samineni, L. & Kumar, M. Hierarchical optimization of high-performance biomimetic and bioinspired membranes. Langmuir 35, 589–607 (2019).

Wang, Z. et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 9, 2004 (2018).

Mayer, C. et al. The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int. J. Biol. Macromol. 26, 3–16 (1999).

Nowbahar, A. et al. Measuring interfacial polymerization kinetics using microfluidic interferometry. J. Am. Chem. Soc. 140, 3173–3176 (2018).

Shan, L., Gu, J., Fan, H., Ji, S. & Zhang, G. Microphase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane. ACS Appl. Mater. Inter 9, 44820–44827 (2017).

Park, S. J. et al. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating. J. Mater. Chem. A 5, 6648–6655 (2017).

Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

Jiang, Z., Karan, S. & Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 30, e1705973 (2018).

Richardson, J. J., Bjornmalm, M. & Caruso, F. Multilayer assembly: technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

Joseph, N. et al. Ultrathin single bilayer separation membranes based on hyperbranched sulfonated poly(aryleneoxindole). Adv. Funct. Mater. 27, 1605068 (2017).

Joseph, N., Ahmadiannamini, P., Jishna, P. S., Volodin, A. & Vankelecom, I. F. J. ‘Up-scaling’ potential for polyelectrolyte multilayer membranes. J. Membr. Sci. 492, 271–280 (2015).

O’Neal, J. T. et al. QCM-D investigation of swelling behavior of layer-by-layer thin films upon exposure to monovalent ions. Langmuir 34, 999–1009 (2018).

Cho, K. L., Hill, A. J., Caruso, F. & Kentish, S. E. Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination. Adv. Mater. 27, 2791–2796 (2015).

Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. Estimates of the ab initio limit for pi-pi interactions: The benzene dimer. J. Am. Chem. Soc. 124, 10887–10893 (2002).

Kang, H. et al. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew. Chem. Int. Ed. 53, 6929–6932 (2014).

Yan, Y. & Huang, J. Hierarchical assemblies of coordination supramolecules. Coord. Chem. Rev. 254, 1072–1080 (2010).

Zhong, Q.-Z. et al. Spray assembly of metal-phenolic networks: formation, growth, and applications. ACS Appl. Mater. Inter. 10, 33721–33729 (2018).

Guo, J. et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem. Int. Ed. 53, 5546–5551 (2014).

Ejima, H. et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science 341, 154–157 (2013).

Gagnon, K. J., Perry, H. P. & Clearfield, A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 112, 1034–1054 (2012).

Murugavel, R., Amitava, C., Walawalkar, M. G., Pothiraja, R. & Rao, C. N. R. Metal complexes of organophosphate esters and open-framework metal phosphates: Synthesis, structure, transformations, and applications. Chem. Rev. 108, 3549–3655 (2008).

Wolfenden, R., Ridgway, C. & Young, G. Spontaneous hydrolysis of ionized phosphate monoesters and diesters and the proficiencies of phosphatases and phosphodiesterases as catalysts. J. Am. Chem. Soc. 120, 833–834 (1998).

Young, M. J., Wahnon, D., Hynes, R. C. & Chin, J. Reactivity of copper(II) hydroxides and copper(II) alkoxides for cleaving an activated phosphate diester. J. Am. Chem. Soc. 117, 9441–9447 (1995).

Song, X. et al. A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam. Angew. Chem. Int. Ed. 55, 3936–3941 (2016).

Thompson, D. B. & Erdman, J. R. J. W. Structural model for ferric phytate: Implications for phytic acid analysis. Cereal Chem. 59, 525–528 (1982).

Hernick, M. & Fierke, C. Mechanisms of metal-dependent hydrolases in metabolism. Comprehensive Natural Products II, 547−581 (2010).

You, X. et al. Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional poss. J. Mater. Chem. A 6, 13191–13202 (2018).

Chen, C. et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9, 1902 (2018).

Guan, K., Liang, F., Zhu, H., Zhao, J. & Jin, W. Incorporating graphene oxide into alginate polymer with a cationization intermediate to strengthen membrane dehydration performance. ACS Appl. Mater. Inter 10, 13903–13913 (2018).

Cheng, C., Li, P., Zhang, T., Wang, X. & Hsiao, B. S. Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae. Chem. Eng. Sci. 196, 265–276 (2019).

He, M. et al. Zwitterionization materials for antifouling membrane surface construction. Acta Biomater. 40, 142–152 (2016).

Mali, G., Šala, M., Arčon, I., Kaučič, V. & Kolar, J. Insight into the short-range structure of amorphous iron inositol hexaphosphate as provided by 31p nmr and fe x-ray absorption spectroscopy. J. Phys. Chem. B 110, 23060–23067 (2006).

Torres, J. et al. Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J. Inorg. Biochem 99, 828–840 (2005).

Sungur, S. & Uzar, A. Investigation of complexes tannic acid and myricetin with Fe(III). Spectrochim. Acta A 69, 225–229 (2008).

Luo, F., Gong, L. L., Feng, X., Zheng, A. & Yi, X. F. Removal and safe reuse of highly toxic allyl alcohol by highly selective photo-sensitive metal-organic framework. Green. Chem. 18, 2047–2055 (2016).