Metagenomic next-generation sequencing as a diagnostic tool for toxoplasmic encephalitis
Tóm tắt
More than 100 different pathogens can cause encephalitis. Testing of all the neurological pathogens by conventional methods can be difficult. Metagenomic next-generation sequencing (NGS) could identify the infectious agents in a target-independent manner. The role of this novel method in clinical diagnostic microbiology still needs to be evaluated. In present study, we used metagenomic NGS to search for an infectious etiology in a human immunodeficiency virus (HIV)-infected patient with lethally diffuse brain lesions. Sequences mapping to Toxoplasma gondii were unexpectedly detected. A 31-year-old HIV-infected patient presented to hospital in a critical ill condition with a Glasgow coma scale score of 3. Brain magnetic resonance imaging showed diffuse brain abnormalities with contrast enhancement. Metagenomic NGS was performed on DNA extract from 300 μL patient’s cerebrospinal fluid (CSF) with the BGISEQ-50 platform. The sequencing detection identified 65,357 sequence reads uniquely aligned to the Toxoplasma gondii genome. Presence of Toxoplasma gondii genome in CSF was further verified by Toxoplasma gondii-specific polymerase chain reaction and Sanger sequencing. Altogether, those results confirmed the diagnosis of toxoplasmic encephalitis. This study suggests that metagenomic NGS may be a useful diagnostic tool for toxoplasmic encephalitis. As metagenomic NGS is able to identify all pathogens in a single run, it may be a promising strategy to explore the clinical causative pathogens in central nervous system infections with atypical features.
Tài liệu tham khảo
Granerod J, Cunningham R, Zuckerman M, Mutton K, Davies NW, Walsh AL, Ward KN, Hilton DA, Ambrose HE, Clewley JP, et al. Causality in acute encephalitis: defining aetiologies. Epidemiol Infect. 2010;138(6):783–800.
Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin Infect Dis. 2018;66(5):778–88.
Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases. J Infect. 2018;76(3):225–40.
AIDS Group SoID. Chinese Medical Association: third edition of guidelines for diagnosis and treatment of HIV/ADIS. Chin J Clin Infect Dis. 2015;8(5):385–401.
Jeon YJ, Zhou Y, Li Y, Guo Q, Chen J, Quan S, Zhang A, Zheng H, Zhu X, Lin J, et al. The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform. PLoS ONE. 2014;9(10):e110240.
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Lin MH, Chen TC, Kuo TT, Tseng CC, Tseng CP. Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol. 2000;38(11):4121–5.
Bowen LN, Smith B, Reich D, Quezado M, Nath A. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol. 2016;12(11):662–74.
Murat JB, Hidalgo HF, Brenier-Pinchart MP, Pelloux H. Human toxoplasmosis: which biological diagnostic tests are best suited to which clinical situations? Expert Rev Anti-Infect Ther. 2013;11(9):943–56.
Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. http://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf. Accessed 7 Aug 2018.
Robert-Gangneux F, Belaz S. Molecular diagnosis of toxoplasmosis in immunocompromised patients. Curr Opin Infect Dis. 2016;29(4):330–9.
Ajzenberg D, Lamaury I, Demar M, Vautrin C, Cabie A, Simon S, Nicolas M, Desbois-Nogard N, Boukhari R, Riahi H, et al. Performance testing of PCR assay in blood samples for the diagnosis of toxoplasmic encephalitis in AIDS patients from the French Departments of America and Genetic Diversity of Toxoplasma gondii: a prospective and multicentric study. PLoS Negl Trop Dis. 2016;10(6):e0004790.
Hu Z, Wei H, Meng F, Xu C, Cheng C, Yang Y. Recurrent cryptococcal immune reconstitution inflammatory syndrome in an HIV-infected patient after anti-retroviral therapy: a case report. Ann Clin Microbiol Antimicrob. 2013;12:40.
Schaff LR, Grommes C. Updates on primary central nervous system lymphoma. Curr Oncol Rep. 2018;20(2):11.
Applications of Clinical Microbial Next-Generation Sequencing Report on an American Academy of Microbiology Colloquium held in Washington, DC, in April 2015. https://www.asm.org/images/Colloquia-report/NGS_Report.pdf. Accessed 5 May 2018.
Long Y, Zhang Y, Gong Y, Sun R, Su L, Lin X, Shen A, Zhou J, Caiji Z, Wang X, et al. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients. Arch Med Res. 2016;47(5):365–71.
Guo LY, Li YJ, Liu LL, Wu HL, Zhou JL, Zhang Y, Wen y, Zhu L, Hu B, Hu HL et al. Detection of pediatric bacterial meningitis pathogens from cerebrospinal fluid by next-generation sequencing technology. J Infect. Available online 12 December 2018. In Press.