Metabolomics: Current technologies and future trends

Proteomics - Tập 6 Số 17 - Trang 4716-4723 - 2006
Katherine A. Hollywood1, Daniel R. Brison2, Royston Goodacre1
1School of Chemistry, The University of Manchester, Manchester, UK
2Department of Reproductive Medicine, St. Mary's Hospital, Manchester, UK

Tóm tắt

Abstract

The ability to sequence whole genomes has taught us that our knowledge with respect to gene function is rather limited with typically 30–40% of open reading frames having no known function. Thus, within the life sciences there is a need for determination of the biological function of these so‐called orphan genes, some of which may be molecular targets for therapeutic intervention. The search for specific mRNA, proteins, or metabolites that can serve as diagnostic markers has also increased, as has the fact that these biomarkers may be useful in following and predicting disease progression or response to therapy. Functional analyses have become increasingly popular. They include investigations at the level of gene expression (transcriptomics), protein translation (proteomics) and more recently the metabolite network (metabolomics). This article provides an overview of metabolomics and discusses its complementary role with transcriptomics and proteomics, and within system biology. It highlights how metabolome analyses are conducted and how the highly complex data that are generated are analysed. Non‐invasive footprinting analysis is also discussed as this has many applications toin vitrocell systems. Finally, for studying biotic or abiotic stresses on animals, plants or microbes, we believe that metabolomics could very easily be applied to large populations, because this approach tends to be of higher throughput and generally lower cost than transcriptomics and proteomics, whilst also providing indications of which area of metabolism may be affected by external perturbation.

Từ khóa


Tài liệu tham khảo

10.1038/nrg1272

Fell D. A., 1996, Understanding the Control of Metabolism

10.1002/1615-9861(200201)2:1<69::AID-PROT69>3.0.CO;2-8

10.1128/JB.184.9.2500-2520.2002

10.1002/1615-9861(200201)2:1<76::AID-PROT76>3.0.CO;2-O

10.1038/nature01511

10.1023/A:1013713905833

10.1016/j.tibtech.2004.03.007

10.1016/S1359-6446(05)03609-3

10.1111/j.1469-8137.2005.01632.x

10.1038/83496

10.1016/S0014-5793(01)02613-8

10.1016/j.mib.2004.04.012

10.1038/nbt1020

10.1046/j.1432-1033.2002.03088.x

10.1128/JB.180.19.5109-5116.1998

10.1007/s11306-005-4429-2

10.1006/abio.2001.5183

10.1002/yea.1308

10.1016/j.trac.2004.11.021

10.1039/b418288j

10.1002/cfg.82

10.1007/978-1-4615-0333-0

10.1038/nbt823

10.1002/cfg.302

10.1128/AEM.70.10.6157-6165.2004

10.1038/nrmicro1177

10.1002/bies.950150406

10.1016/j.ejogrb.2004.01.019

10.1093/humrep/15.8.1667

10.1093/humrep/17.4.999

10.1093/humrep/deh409

10.1038/nbt1015

10.1038/nrd1157

10.1016/S0958-1669(02)00349-X

10.1007/s11306-005-1102-8

10.1016/S1359-6446(05)03735-9

10.1111/j.1365-313X.2006.02692.x

10.1038/nbt1041

10.1038/nbt0705-833

10.1021/ac950671t

10.1016/S0003-2670(97)00062-7

10.1038/81137

10.1016/j.tplants.2004.07.004

10.1016/S0167-7799(00)89006-X

10.1007/s11306-005-1106-4

Manly B. F. J., 1994, Multivariate Statistical Methods: A Primer, 215

Martens H., 1989, Multivariate Calibration

10.1016/j.cbpa.2004.08.013

10.1007/978-0-387-21606-5

10.1007/978-1-4899-3184-9

Bishop C. M., 1995, Neural Networks for Pattern Recognition, 10.1093/oso/9780198538493.001.0001

10.7551/mitpress/5236.001.0001

Werbos P. J., 1994, The Roots of Back‐Propagation: from Ordered Derivatives to Neural Networks and Political Forecasting

Broomhead D. S., 1988, Complex Syst., 2, 321

Breiman L., 1984, Classification and Regression Trees

10.1002/cem.1180050506

Quinlan J. R., 1993, C4.5: programs for machine learning

10.1887/0750308958

Holland J. H., 1992, Adaption in natural and artifcial systems, 10.7551/mitpress/1090.001.0001

10.1007/b101880

Koza J. R., 1992, Genetic Programming: On the Programming of Computers by Means of Natural Selection, 819

Koza J. R., 1994, Genetic Programming II: Automatic Discovery of Reusable Programs, 746

Koza J. R., 1999, Genetic Programming III: Darwinian Invention and Problem Solving

Koza J. R., 2003, Genetic Programming: Routine Human‐Competitive Machine Intelligence

10.1104/pp.126.3.943

10.1007/s11306-005-4810-1

10.1007/s11306-005-0003-1

10.1021/ac051495j

10.1038/35036627

10.1098/rspb.2001.1711

10.1093/bib/3.2.134

10.1016/S0958-1669(02)00299-9

10.1101/gr.234503

10.1007/s11306-005-1107-3

10.1074/jbc.M403838200

Villas‐Bôas S. G., 2005, Mass Spectrom. Rev., 24, 616

10.1167/iovs.02-0575

10.1007/s11306-005-1108-2

10.1016/j.jasms.2004.08.016

10.1016/j.jchromb.2004.07.045

10.1021/ac034716z

10.1021/ac020064n

10.1021/pr034020m

10.1080/004982599238047

10.1016/S0021-9673(03)00303-0

10.1016/j.toxlet.2003.09.011

10.1039/b602376m

10.1016/S1044-0305(01)00339-7

10.1093/jxb/eri070

10.1007/s11306-005-0007-x

10.1089/15362310260256882

10.1007/s11306-005-1103-7