Phân tích mô hình chuyển hóa trong máu từ dây rốn của trẻ sơ sinh có trọng lượng thấp

Journal of Translational Medicine - Tập 10 Số 1 - 2012
Carmen Ivorra1, Consuelo García-Vicent1, Felipe Javier Chaves2, Daniel Monleón3, José Manuel Morales4, Empar Lurbe5
1Cardiovascular Risk Unit, Consorcio, Hospital General, University of Valencia, Av. Tres Cruces s/n, Valencia, 46014, Spain
2Unidad de Genotipado y Diagnóstico Genético, Fundación Investigación, Hospital Clínico Universitario de Valencia/INCLIVA Valencia, Av. Blasco Ibáñez, 17, Valencia, 46010, Spain
3Fundación Investigación Hospital Clínico Universitario de Valencia / INCLIVA, Av. Blasco Ibáñez, 17, Valencia, Spain
4Unidad Central Investigación Medicina, Universidad de Valencia /INCLIVA, Av. Blasco Ibáñez, 17, Valencia, 46014, Spain
5CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain

Tóm tắt

Tóm tắtNền tảngTrọng lượng sinh thấp đã được liên kết với nguy cơ tăng cao phát triển béo phì, tiểu đường loại 2 và cao huyết áp trong cuộc sống trưởng thành, mặc dù cơ chế dưới dạng liên kết này vẫn chưa được hiểu rõ. Mục tiêu của nghiên cứu là xác định xem hồ sơ chuyển hóa trong huyết tương từ dây rốn có khác biệt giữa trẻ sơ sinh có trọng lượng sinh thấp và bình thường hay không.Phương phápNăm mươi phụ nữ mang thai khỏe mạnh và trẻ sơ sinh của họ đã được chọn. Tiêu chí đủ điều kiện là sinh đúng thời hạn và có thai bình thường. Các cặp được phân loại theo trọng lượng sinh: trọng lượng sinh thấp (LBW, trọng lượng sinh < 10th bách phân, n = 20) và nhóm đối chứng (đối chứng, trọng lượng sinh nằm trong khoảng 75th-90th bách phân, n = 30). Phương pháp Cộng hưởng từ hạt nhân (NMR) được sử dụng để tạo ra các dấu vân tay chuyển hóa của mẫu huyết tương từ dây rốn. Đồng thời, hồ sơ chuyển hóa của các bà mẹ cũng được phân tích. Dữ liệu thu được đã được áp dụng các phương pháp phân tích hóa lượng, phân tích thành phần chính và phân tích phân biệt tối thiểu từng phần.

Từ khóa

#trẻ sơ sinh có trọng lượng sinh thấp #hồ sơ chuyển hóa #dây rốn #mẹ và con #phân tích NMR

Tài liệu tham khảo

Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS: Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993, 341: 938-941. 10.1016/0140-6736(93)91224-A.

Burdge GC, Lillycrop KA: Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr. 2010, 30: 315-339. 10.1146/annurev.nutr.012809.104751.

Lubchenco L, Hansman C, Dressler M, Boyd E: Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics. 1963, 32: 793-800.

Godfrey KM, Barker DJ: Fetal nutrition and adult disease. Am J Clin Nutr. 2000, 71 (Suppl 5): 1344S-1352S.

Hales CN, Ozanne SE: The dangerous road of catch-up growth. J Physiol. 2003, 547 (Pt 1): 5-10.

Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008, 359: 61-73. 10.1056/NEJMra0708473.

Singhal A, Lucas A: Early origins of cardiovascular disease: is there a unifying hypothesis?. Lancet. 2004, 363: 1642-1645. 10.1016/S0140-6736(04)16210-7.

Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le Noble F, Ahmed A, Gratacós E: Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation. 2010, 121: 2427-2436. 10.1161/CIRCULATIONAHA.110.937995.

Ligi I, Grandvuillemin I, Andres V, Dignat-George F, Simeoni U: Low birth weight infants and the developmental programming of hypertension: a focus on vascular factors. Semin Perinatol. 2010, 34: 188-192. 10.1053/j.semperi.2010.02.002.

Lurbe E, Garcia-Vicent C, Torro I, Fayos JL, Aguilar F, de Llano JM, Fuertes G, Redón J: First-year blood pressure increase steepest in low birthweight newborns. J Hypertens. 2007, 25: 81-86. 10.1097/HJH.0b013e32801040ec.

de Martín LJJ, Fuertes G, Torró I, García Vicent C, Fayos JL, Lurbe E: Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels. J Transl Med. 2009, 7: 30-10.1186/1479-5876-7-30.

Kenny LC, Broadhurst DI, Dunn W, Brown M, North RA, McCowan L, Roberts C, Cooper GJ, Kell DB, Baker PN: Screening for Pregnancy Endpoints Consortium. Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010, 56: 741-749. 10.1161/HYPERTENSIONAHA.110.157297.

Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabé de Angelis M, Wichmann HE, Kronenberg F, AdamsKi J, LLLiq T: Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010, 5: e13953-10.1371/journal.pone.0013953.

Kim JY, Park JY, Kim OY, Ham BM, Kim HJ, Kwon DY, Jang Y, Lee JH: Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J Proteome Res. 2010, 9: 4368-4375. 10.1021/pr100101p.

Mutch DM, Fuhrmann JC, Rein D, Wiemer JC, Bouillot JL, Piotou C, Clément K: Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS One. 2009, 4: e7905-10.1371/journal.pone.0007905.

Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Chaiworapongsa T, Gomez R, Nien JK, Yoon BH, Mazor M, Luo J, Banks D, Ryals J, Beecher C: Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010, 23: 1344-1359. 10.3109/14767058.2010.482618.

Sabatine MS, Liu E, Morrow DA, Heller E, McCarroll R, Wiegand R, Berriz GF, Roth FP, Gerszten RE: Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation. 2005, 112: 3868-3875. 10.1161/CIRCULATIONAHA.105.569137.

Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ: Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1 H-NMR-based metabonomics. Nat Med. 2002, 8: 1439-1444. 10.1038/nm1202-802.

Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe MC, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE: Metabolite profiles and the risk of developing diabetes. Nat Med. 2011, 17: 448-453. 10.1038/nm.2307.

De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W: NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem. 2008, 80: 3783-3790. 10.1021/ac7025964.

Ballard JL, Novak KK, Driver M: A simplified score for assessment of fetal maturation of newly born infants. J Pediatr. 1979, 95: 769-774. 10.1016/S0022-3476(79)80734-9.

Battaglia FC, Lubchenco LO: A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967, 71: 159-163. 10.1016/S0022-3476(67)80066-0.

Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC: 750 MHz 1 H and 1 H-13C NMR spectroscopy of human blood plasma. Anal Chem. 1995, 67: 793-811. 10.1021/ac00101a004.

Viant MR, Lyeth BG, Miller MG, Berman RF: An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomed. 2005, 18: 507-516. 10.1002/nbm.980.

Bertini I, Calabrò A, De Carli V, Luchinat C, Nepi S, Porfirio B, Renzi D, Saccenti E, Tenori L: The metabonomic signature of celiac disease. J Proteome Res. 2009, 8: 170-177. 10.1021/pr800548z.

Trygg J, Holmes E, Lundstedt T: Chemometrics in metabonomics. J Proteome Res. 2007, 6: 469-479. 10.1021/pr060594q.

Cleal JK, Poore KR, Newman JP, Noakes DE, Hanson MA, Green LR: The effect of maternal undernutrition in early gestation on gestation length and fetal and postnatal growth in sheep. Pediatr Res. 2007, 62: 422-427. 10.1203/PDR.0b013e31813cbe60.

Nissen PM, Nebel C, Oksbjerg N, Bertram HC: Metabolomics reveals relationship between plasma inositols and birth weight: possible markers for fetal programming of type 2 diabetes. J Biomed Biotechnol. 2011, 2011: 378268-

García AP, Palou M, Sánchez J, Priego T, Palou A, Picó C: Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring. PLoS One. 2011, 6: e17313-10.1371/journal.pone.0017313.

He Q, Ren P, Kong X, Xu W, Tang H, Yin Y, Wang Y: Intrauterine growth restriction alters the metabonome of the serum and jejunum in piglets. Mol Biosyst. 2011, 7: 2147-2155. 10.1039/c1mb05024a.

Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V: Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ. 1996, 312: 410-414. 10.1136/bmj.312.7028.410.

Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MJ, Hess BW, Wu G: Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod. 2004, 71: 901-908. 10.1095/biolreprod.104.029645.

Tamashiro KL, Moran TH: Perinatal environment and its influences on metabolic programming of offspring. Physiol Behav. 2010, 100: 560-566. 10.1016/j.physbeh.2010.04.008.

Cetin I, Ronzoni S, Marconi AM, Perugino G, Corbetta C, Battaglia FC, Pardi G: Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnancies. Am J Obstet Gynecol. 1996, 174: 1575-1583. 10.1016/S0002-9378(96)70609-9.

Cleal JK, Lewis RM: The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008, 20: 419-426. 10.1111/j.1365-2826.2008.01662.x.

Jansson N, Pettersson J, Haafiz A, Ericsson A, Palmberg I, Tranberg M, Ganapathy V, Powell TL, Jansson T: Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006, 576: 935-946.

Bajoria R, Sooranna SR, Ward S, Hancock M: Placenta as a link between amino acids, insulin-IGF axis, and low birth weight: evidence from twin studies. J Clin Endocrinol Metab. 2002, 87: 308-315. 10.1210/jc.87.1.308.

Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE: Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009, 32: 1678-1683. 10.2337/dc08-2075.

Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Llkayeva O, Wenner BR, Yancy WS, Heisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9: 311-326. 10.1016/j.cmet.2009.02.002.

Felig P, Marliss E, Cahill GF: Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969, 281: 811-816. 10.1056/NEJM196910092811503.

Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M: Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002, 51: 599-605. 10.2337/diabetes.51.3.599.

Monleón D, Morales JM, Gonzalez-Segura A, Gonzalez-Darder JM, Gil-Benso R, Cerdá-Nicolás M, López-Ginés C: Metabolic aggressiveness in benign meningiomas with chromosomal instabilities. Cancer Res. 2010, 70: 8426-8434. 10.1158/0008-5472.CAN-10-1498.

Zeisel SH: Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006, 26: 229-250. 10.1146/annurev.nutr.26.061505.111156.

Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH: Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J. 2010, 24: 184-195. 10.1096/fj.09-140145.

Wolff GL, Kodell RL, Moore SR, Cooney CA: Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998, 11: 949-957.

Niculescu MD, Zeisel SH: Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002, 132 (Suppl 8): 2333S-2335S.

Davison JM, Mellott TJ, Kovacheva VP, Blusztajn JK: Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. J Biol Chem. 2009, 284: 1982-1989.

Niculescu MD, Craciunescu CN, Zeisel SH: Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006, 20: 43-49. 10.1096/fj.05-4707com.

Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC: Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007, 97: 1064-1073. 10.1017/S000711450769196X.

Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA: Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life?. Br J Nutr. 2007, 97: 1036-1046. 10.1017/S0007114507682920.

Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA, Greally JM: Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J Biol Chem. 2010, 285: 15111-15118. 10.1074/jbc.M109.095133.

Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A, Barzilai N, Greally JM: Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One. 2010, 5: e8887-10.1371/journal.pone.0008887.