Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target

Medicinal Research Reviews - Tập 39 Số 1 - Trang 70-113 - 2019
María del Carmen Ocaña Ocaña1, Beatriz Martı́nez-Poveda1, Ana R. Quesada2,1, Miguel Ángel Medina2,1
1Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech Universidad de Málaga Málaga Spain
2CIBER de Enfermedades Raras (CIBERER), Málaga, Spain

Tóm tắt

AbstractSince reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer‐associated fibroblasts, tumor‐associated macrophages, and tumor‐infiltrating T cells, surround tumor cells in the so‐called tumor microenvironment (TME). Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the TME and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that TME is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including antitumor agents with those targeting stromal cell metabolism, antiangiogenic drugs, and/or immunotherapy are being developed as promising therapeutics.

Từ khóa


Tài liệu tham khảo

10.1158/jcr.1925.148

10.1126/science.123.3191.309

10.1038/nrc1478

10.1016/j.cell.2011.02.013

10.1002/bies.20655

10.2741/3173

10.2119/molmed.2009.00162

10.1111/j.1742-4658.2007.05686.x

10.1038/sj.onc.1209597

10.1038/nature11706

10.1038/nrd3504

10.1007/BF00230880

10.1016/j.drudis.2013.10.008

10.1080/2162402X.2016.1149674

10.1038/ni.3415

10.1016/j.immuni.2014.06.010

10.3389/fonc.2014.00107

10.1016/j.cmet.2015.12.006

10.1016/j.mehy.2012.06.002

10.18632/oncotarget.2689

10.1042/bj3640309

10.1126/science.1140958

10.1146/annurev-cellbio-092910-154237

10.1126/science.1160809

10.1016/j.cell.2015.08.016

10.1016/j.gde.2009.10.008

10.1016/S0021-9258(17)30124-2

10.1089/ars.2016.6750

10.1016/j.bbamcr.2016.03.013

10.1038/nature24057

10.1016/j.ccr.2010.08.017

Carrascosa JM, 1984, Nitrogen movement between host and tumor in mice inoculated with Ehrlich ascitic tumor cells, Cancer Res, 44, 3831

Quesada AR, 1988, Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells, Cancer Res, 48, 1551

10.1002/cbf.290070103

10.1038/onc.2009.358

10.1111/pcmr.12000

10.1073/pnas.0709747104

10.1126/science.aam9305

10.1016/j.molmed.2012.06.005

Elia I, 2016, Organ‐specific cancer metabolism and its potential for therapy, Handb Exp Pharmacol, 321

10.1158/0008-5472.CAN-16-0141

10.2174/13816128113199990482

10.3389/fonc.2012.00163

10.1016/j.niox.2016.08.002

Bloch‐Frankenthal L, 1965, Fatty acid oxidation and ketogenesis in transplantable liver tumors, Cancer Res, 25, 732

10.1016/j.ccr.2012.08.014

Fields ALA, 1981, Regulation of energy metabolism in Morris hepatoma 7777 and 7800, Cancer Res, 41, 2762

10.1038/bjc.1986.215

10.1038/oncsis.2015.49

10.1016/S0046-8177(96)90218-X

Rashid A, 1997, Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia, Am J Pathol, 150, 201

10.1016/S0304-3835(01)00464-5

10.1111/j.1742-4658.2012.08644.x

10.1172/JCI38942

10.1016/j.canlet.2003.10.021

10.1038/nature20791

10.1016/j.molcel.2014.08.018

10.1084/jem.118.1.99

10.1016/0006-2952(69)90375-X

10.1042/bj3570321

10.1152/ajpendo.00015.2013

10.1097/MPA.0b013e318247d903

Karpel‐Massler G, 2017, Metabolic reprogramming of glioblastoma cells by L‐asparaginase sensitizes for apoptosis in vitro and in vivo, Oncotarget, 7, 33512, 10.18632/oncotarget.9257

10.1016/j.tibs.2014.02.004

10.1056/NEJM194806032382301

10.1038/nature10350

10.1038/38525

10.1073/pnas.1203244109

10.1016/j.trecan.2017.07.005

10.1073/pnas.0400453101

10.1002/ijc.26451

10.1155/2013/186972

10.1074/jbc.M607065200

10.1242/jcs.03062

10.1073/pnas.60.4.1420

10.1038/nrc1454

10.1097/MCO.0b013e328314b9ac

10.1038/360355a0

10.1016/0163-7258(92)90032-U

10.1074/jbc.M307265200

10.1002/mc.10166

10.1073/pnas.90.16.7804

10.1074/jbc.M105219200

10.1371/journal.pone.0127246

10.1038/nature22964

10.1038/35025220

10.1152/ajpcell.1991.261.1.C185

10.1016/0014-5793(87)81137-7

10.1016/0167-4889(83)90084-8

10.1016/0022-2828(90)90984-A

10.1159/000257490

10.1038/bjc.2012.398

10.1016/j.cell.2013.06.037

Hée VF, 2015, Lactate does not activate NF‐κB in oxidative tumor cells, Front Pharmacol, 6, 228

10.1161/01.ATV.0000056744.26901.BA

10.1074/jbc.M111.278754

10.1111/joim.12016

10.1053/paor.1999.0230

10.15252/embj.201695518

10.15252/embj.201796436

10.1016/S0008-6363(96)88621-4

10.1097/00042737-200109000-00003

10.1007/s00726-016-2256-6

10.1016/S1095-6433(00)00196-3

10.1007/BF00223424

10.1038/nature14362

10.1016/j.vph.2017.01.001

10.1016/j.cmet.2013.08.001

10.1016/j.tem.2013.08.006

10.1146/annurev-physiol-021115-105134

10.1002/hep.26384

10.1038/530042a

10.1084/jem.20150542

10.1084/jem.20150576

10.4161/cc.21701

10.4161/cc.10.11.15659

10.1016/j.celrep.2015.02.006

10.1158/0008-5472.CAN-05-3260

10.1016/j.yexcr.2011.11.014

10.1016/j.cmet.2016.10.011

10.1038/cmi.2014.83

Quatromoni JG, 2012, Tumor‐associated macrophages: Function, phenotype, and link to prognosis in human lung cancer, Am J Transl Res, 4, 376

10.1016/j.cell.2010.01.025

10.1158/0008-5472.CAN-10-0269

10.1126/science.1252510

10.1016/j.immuni.2014.09.014

10.1016/j.cmet.2016.06.004

10.4049/jimmunol.0901698

10.1038/nature11986

10.1016/j.ccr.2004.11.022

10.1016/j.cell.2011.03.054

10.3389/fimmu.2016.00145

10.1038/cr.2015.68

Ocaña MC, 2017, Metabolism in the tumor microenvironment: What is known about stromal and immune cells, Clin Immunol Endocr Metab Drugs, 33

10.1080/2162402X.2016.1229725

10.1021/acs.jproteome.6b00604

Daurkin I, 2011, Tumor‐associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15‐lipoxygenase‐2 pathway, Microenviron Immunol, 71, 6400

10.1080/15384047.2015.1056406

10.7554/eLife.11612

10.1016/j.smim.2015.08.001

10.1016/j.coi.2015.01.015

10.1126/science.345.6204.1550

10.3389/fimmu.2017.00270

10.1016/j.jnutbio.2015.11.002

10.1186/s40425-016-0109-1

10.1016/j.cell.2015.08.012

10.1146/annurev-immunol-032713-120236

10.1016/j.immuni.2009.04.014

10.1016/j.cell.2011.07.033

10.1016/j.immuni.2011.09.021

10.1093/jn/131.9.2515S

10.1016/j.cell.2016.09.031

10.3389/fimmu.2017.00424

10.1007/s10555-011-9276-1

10.1016/j.bbadis.2010.11.010

10.1007/BF02899089

10.1083/jcb.25.2.123

10.1111/j.1748-1716.1968.tb03867.x

10.1111/j.1748-1716.1974.tb05689.x

10.1002/mrm.1910290604

10.1016/0014-2999(81)90565-3

Mitra R, 1977, Inhibition of mast cell population by L‐glutamine in aspirin‐induced ulceration in rat stomach, Indian J Physiol Pharmacol, 21, 374

10.1007/s00394-012-0353-1

10.1111/all.12346

10.1038/nature10491

10.4049/jimmunol.0902720

10.1016/j.cellsig.2011.07.011

10.1016/j.jaci.2016.09.047

10.1007/s12272-014-0341-5

10.1371/journal.pone.0015071

10.1007/s10014-017-0291-y

10.1371/journal.pone.0101402

10.1155/2017/4972078

10.1074/jbc.M600418200

10.1167/iovs.11-7934

10.1016/j.ajpath.2016.05.016

10.1016/j.ccr.2012.02.022

10.1159/000386035

Thomas L, 1982, On immunosurveillance in human cancer, Yale J Biol Med, 55, 329

10.1016/j.cell.2015.08.064

10.1016/j.cell.2013.05.016

10.1182/blood-2006-07-035972

10.3390/vaccines4030028

10.1182/blood-2008-12-195792

10.1038/nm730

10.1128/MCB.25.21.9543-9553.2005

10.1038/ncomms7692

10.4049/jimmunol.176.11.6752

10.1007/s00262-011-1040-4

10.1158/0008-5472.CAN-14-1337

10.1056/NEJM197111182852108

10.1038/nrd2115

10.1038/sj.leu.2404402

10.1016/j.semcdb.2011.10.006

10.1038/nature04478

10.1016/j.cell.2011.08.039

10.15252/emmm.201404156

10.1158/0008-5472.CAN-10-2828

10.1371/journal.pone.0033418

10.1074/jbc.M113.474619

10.1186/2045-824X-3-9

10.1152/ajpheart.01012.2005

10.1126/science.aaq0365

10.1126/science.aah5072

10.4161/cc.10.24.18487

10.4161/cc.8.23.10238

10.18632/oncotarget.2243

10.3389/fimmu.2016.00052

10.1006/excr.2002.5508

10.1016/j.cell.2014.05.045

10.1016/j.cell.2005.02.034

10.1016/j.ejcb.2016.07.004

10.1007/s13277-016-5049-3

10.1074/jbc.M800798200

10.1016/j.canlet.2011.01.011

10.1016/j.mce.2017.01.031

10.1158/0008-5472.CAN-13-2740

10.1080/2162402X.2016.1191731

10.1038/nature13490

Leek RD, 1996, Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma, Cancer Res, 56, 4625

10.1038/nrc1256

10.18632/oncotarget.5325

10.1016/j.ccr.2013.11.007

10.3892/or.2016.4660

10.1002/1873-3468.12771

10.1152/ajpcell.1993.264.6.C1594

Klimp AH, 2001, Expression of cyclooxygenase‐2 and inducible nitric oxide synthase in human ovarian tumors and tumor‐associated macrophages, Cancer Res, 61, 7305

10.1084/jem.183.4.1323

10.1371/journal.ppat.1005783

10.4049/jimmunol.1100164

10.3892/or.2016.5136

10.1126/science.aan2691

10.1126/science.aal3535

10.1084/jem.20131916

10.4049/jimmunol.180.11.7175

10.1186/1479-5876-11-94

10.1038/nature19420

10.1038/nature19084

10.1038/ncb2432

10.1016/j.bbrep.2016.06.004

10.1194/jlr.M700131-JLR200

10.1038/nm.2492

10.1038/cddis.2017.21

10.1158/0008-5472.CAN-10-3323

10.1194/jlr.M065805

10.1053/j.seminoncol.2014.02.005

10.1016/0065-2571(75)90008-4

10.1111/jcmm.12794

Shapot VS, 1980, Biochemical Aspects of Tumour Growth

Mider GB, 1951, Some aspects of nitrogen and energy metabolism in cancerous subjects: A review, Cancer Res, 11, 821

10.1097/00000658-199312000-00004

Wu C, 1970, Responsiveness of glutamine‐metabolizing enzymes in Morris hepatomas to metabolic modulations, Cancer Res, 30, 2675

10.1016/S0039-6060(97)90039-8

10.1093/jn/131.9.2467S

10.1016/0003-9861(89)90335-4

10.1007/BF00801794

Gershtein ES, 1978, Kinetics of (C14) thymidine metabolism in hepatomas and tissues from normal and tumor‐bearing animals, Biokhimiia, 43, 1303

10.1093/jn/131.9.2539S

10.1177/0148607195019006492

10.1093/jn/131.9.2578S

LePage GA, 1952, Growth of carcinoma implants in fed and fasted rats, Cancer Res, 12, 153

10.1016/0022-4804(89)90101-7

10.3892/or.2015.4164

10.1016/0014-2964(71)90035-1

10.1073/pnas.75.11.5506

10.1007/BF00807497

10.1016/j.cmet.2016.10.010

Cahlin C, 2000, Experimental cancer cachexia: The role of host‐derived cytokines interleukin (IL)‐6, IL‐12, interferon‐γ, and tumor necrosis factor α evaluated in gene knockout, tumor‐bearing mice on C57 Bl background and eicosanoid‐dependent cachexia, Cancer Res, 60, 5488

10.1016/j.cell.2016.04.039

Shapot VS, 1974, Blood glucose levels and gluconeogenesis in animals bearing transplantable tumors, Cancer Res, 34, 1827

10.1152/ajpendo.1998.274.5.E817

10.1172/JCI117651

10.18632/oncotarget.18307

10.1038/nrc3829

10.1016/0005-2787(75)90111-2

Pushkina IP, 1976, Correlation of membrane‐bound and free ribosomes in normal rat liver, Zajdela hepatoma rat liver and ascite cells proper, Biokhimiia, 41, 1940

Baker N, 1978, Regulation of plasma‐free fatty acid mobilization by dietary glucose in Ehrlich ascites tumor‐bearing mice, Cancer Res, 38, 2372

10.1126/science.1198973

10.1002/bmc.3553

10.1177/0148607193017004375

10.1177/0148607185009004428

10.1016/0024-3205(89)90541-9

10.1016/j.niox.2014.11.005

10.1038/nature12138

10.1158/0008-5472.CAN-14-2211

Holm E, 1995, Substrate balances across colonic carcinomas in humans, Cancer Res, 55, 1373

10.1016/j.devcel.2016.08.001

10.1016/j.cell.2015.06.017

10.1073/pnas.1307237110

10.1158/1078-0432.CCR-05-1634

10.1200/JCO.2011.36.5742

Catane R, 1979, Azaserine, DON, and azotomycin: Three diazo analogs of L‐glutamine with clinical antitumor activity, Cancer Treat Rep, 63, 1033

10.1007/s13277-016-4984-3

10.18632/oncotarget.14188

Yuan L, 2016, Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer, Am J Transl Res, 8, 4265

10.18632/oncotarget.6311

10.1042/BCJ20160383

10.1016/S0140-6736(69)91400-7

Prager MD, 1971, Metabolism of asparagine, aspartate, glutamine, and glutamate in lymphoid tissue: Basis for immunosuppression by L‐asparaginase, J Immunol, 106, 975, 10.4049/jimmunol.106.4.975

10.1093/ajcn/37.6.1025

10.1189/jlb.4A0615-252R

10.1038/cddis.2017.144

10.1172/JCI93565

10.1016/j.clml.2016.04.006

10.1158/2159-8290.CD-16-1034

10.1146/annurev-biochem-061516-044732

10.3389/fonc.2012.00085

10.18632/oncotarget.14485

10.1016/j.breast.2016.09.002

10.1007/s10863-012-9455-y

10.1371/journal.pone.0013699

Roy S, 2005, Effect of glutamine analogue‐acivicin on tumor induced angiogenesis in Ehrlich ascites carcinoma, Indian J Exp Bol, 43, 407

10.1016/j.cbi.2014.04.007

10.1111/apm.12031

10.1016/j.yexcr.2010.05.033

Takigawa M, 1990, Tumor angiogenesis and polyamines: α‐difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma‐induced angiogensis in ovo and the proliferation of vascular endothelial cells in vitro, Cancer Res, 50, 4131

10.1016/j.celrep.2016.04.029

10.1016/j.celrep.2016.04.015

10.1016/j.celrep.2016.04.028

10.1152/ajplung.00274.2009

10.1016/j.ccell.2016.10.006

10.1016/j.critrevonc.2015.10.011

10.1016/j.bbcan.2014.05.002

10.1007/s10456-017-9552-y

10.1016/j.trecan.2016.11.007

10.1038/bjc.2017.69

10.1172/JCI69741

10.18632/oncotarget.2012

10.4161/cc.9.16.12553

10.1158/1078-0432.CCR-14-2198

10.1158/1078-0432.CCR-13-0545

10.1038/jid.2010.416

10.1111/exd.13138

10.1016/j.biopha.2017.01.090

10.1126/science.aah4967

10.1074/jbc.M511397200

10.1194/jlr.R800079-JLR200

10.1007/s00360-015-0920-x

10.1242/dmm.007724

Skelton MS, 1995, Lactate influx into red blood cells of athletic and nonathletic species, Am J Physiol, 268, R1121

10.1113/jphysiol.2009.178350

10.1073/pnas.91.22.10625

10.1016/j.gde.2017.03.002

10.1016/j.jplph.2017.03.003

10.3389/fpls.2015.00889

10.1002/jcb.22984

Liu Y, 2012, A small‐molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell‐cycle arrest, and inhibits cancer cell growth in vitro and in vivo, Ther Discov, 11, 1672

10.1158/1535-7163.MCT-08-0569

10.1007/s00280-006-0291-9

10.1074/jbc.271.15.8719

10.1016/j.biochi.2016.03.014

10.1016/0016-0032(52)90482-1

10.1016/S0304-3835(01)00667-X

Floridi A, 1981, Effect of lonidamine on the energy metabolism of Ehrlich ascites tumor cells, Cancer Res, 41, 4661

10.1016/j.phytochem.2009.06.007

10.1158/1535-7163.MCT-13-0097

10.1016/S0926-6593(65)80227-2

10.1038/onc.2011.137

10.1073/pnas.0914433107

10.1016/j.ejps.2012.08.012

10.1038/nchembio.2143

10.1016/S0006-2952(01)00636-0

10.1039/c3ob40870a

Elwood JC, 1968, Effect of oxamate on glycolysis and respiration in sarcoma 37 ascites cells, Cancer Res, 28, 2056

10.1016/j.dmpk.2016.03.004

10.1042/BJ20151120

Baltazar F, 2014, Monocarboxylate transporters as targets and mediators in cancer therapy response, Histol Histopathol, 29, 1511

10.1158/1078-0432.CCR-13-2270

Sonveaux P, 2008, Targeting lactate‐fueled respiration selectively kills hypoxic tumor cells in mice, J Clin Invest, 118, 3930

10.2174/187231211796904991

10.1002/ijc.25728

10.1056/NEJM198308183090702

10.1186/2049-3002-2-4

10.1126/science.1236062

10.1126/science.1234769

10.1042/bj1480085

Britten CD, 2000, A phase I and pharmacokinetic study of the mitochondrial‐specific rhodacyanine dye analog MKT 077, Clin Cancer Res, 6, 42

10.1158/1535-7163.MCT-15-1021

10.1158/0008-5472.CAN-14-2260

10.1016/0014-2964(73)90140-0

10.2337/diabetes.32.12.1083

10.1093/jnci/91.9.743

10.1158/0008-5472.CAN-10-1666

10.1158/1535-7163.MCT-13-0870

10.1038/nrc.2016.71

Zhang J, 2016, Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma, Oncotarget

10.1186/bcr2154

10.1177/000348949009900113

10.1194/jlr.M200312-JLR200

10.18632/oncotarget.17359

Roberts LN, 1972, Clinical trial of a new antianginal drug: Perhexiline maleate, J Clin Pharmacol, 12, 342

10.1158/1078-0432.CCR-15-0126

Pizer ES, 1998, Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines, Cancer Res, 58, 4611

10.1158/0008-5472.CAN-03-3645

10.1038/cddis.2013.215

10.1016/j.ccr.2005.09.008

Zhou W, 2003, Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells, Cancer Res, 63, 7330

10.1038/onc.2011.51

10.1038/sj.onc.1207062

10.1038/cddis.2013.453

10.1371/journal.pone.0064961

10.1093/jnci/dji133

10.1007/s13277-015-3551-7

10.1016/j.critrevonc.2014.08.002

10.1007/s13277-015-4428-5

10.1038/srep28754

10.1016/j.bmc.2008.02.030

Boros LG, 1997, Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation, Cancer Res, 57, 4242

10.1016/j.ccr.2012.09.020

10.1097/MCO.0000000000000122

10.1007/s10637-012-9807-9

10.1016/j.drudis.2016.12.003

10.1084/jem.20061104

10.18632/oncotarget.9326

10.1038/nrc2639

10.1182/blood-2009-09-246124

10.1016/0006-291X(72)90661-4

Siu LL, 2002, A phase I and pharmacokinetic study of SAM486A, a novel polyamine biosynthesis inhibitor, administered on a daily‐times‐five every‐three‐week schedule in patients with advanced solid malignancies, Clin Cancer Res, 8, 2157

10.1002/ijc.28139

10.1016/0006-291X(80)90102-3

10.1021/jm00126a026

10.1016/j.drup.2012.07.002

10.1038/nrclinonc.2014.51

10.1186/1471-2407-11-255

10.1016/j.ejphar.2014.07.041

10.1586/era.11.175

10.1007/s12185-012-1192-9

10.1517/14712598.2014.912270

10.1016/j.tips.2014.11.004

10.1007/s12253-017-0317-0

10.1038/s41586-018-0018-1

10.1038/nbt1017-895