Metabolically healthy obese and metabolic syndrome of the lean: the importance of diet quality. Analysis of MAGNETIC cohort

Nutrition Journal - Tập 19 - Trang 1-13 - 2020
Kamila Osadnik1, Tadeusz Osadnik1,2, Marta Lonnie3, Mateusz Lejawa1, Rafał Reguła4, Martyna Fronczek5, Marcin Gawlita5,6, Lidia Wądołowska3, Mariusz Gąsior4, Natalia Pawlas1
1Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
22nd Department of Cardiology and Angiology, Silesian Center for Heart Diseases, Zabrze, Poland
3Department of Human Nutrition, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
43rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
5Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
6Department of Environmental Medicine and Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland

Tóm tắt

Obesity is considered as an indispensable component of metabolic health assessment and metabolic syndrome diagnosis. The associations between diet quality and metabolic health in lean, young adults have not been yet established whilst data addressing this issue in overweight and obese subjects is scarce. Our analysis aimed to establish the link between diet quality (measured with data-driven dietary patterns and diet quality scores) and metabolic syndrome (MS) in young adults, regardless of their adiposity status. A total of 797 participants aged 18–35 years old were included in the study. Participants were assigned into metabolic syndrome (MS) group if at least two abnormalities within the following parameters were present: blood pressure, triglycerides, total cholesterol, HDL cholesterol, blood glucose. Participants with one or none abnormalities were considered as metabolically healthy subjects (MH), Diet quality was assessed with two approaches: 1) a posteriori by drawing dietary patterns (DPs) with principal component analysis (PCA) and 2) a priori by establishing diet quality scores and the adherence to pro-Healthy-Diet-Index (pHDI) and non-Healthy-Diet-Index (nHDI). Logistic regression with backward selection based on Akaike information criterion was carried out, to identify factors independently associated with metabolic health. Within the MS group, 31% were of normal weight. Three PCA-driven DPs were identified, in total explaining 30.0% of the variance: “Western” (11.8%), “Prudent” (11.2%) and “Dairy, breakfast cereals & treats” (7.0%). In the multivariate models which included PCA-driven DPs, higher adherence to middle and upper tertiles of “Western” DP (Odds Ratios [OR] and 95% Confidence Intervals [95% CI]: 1.72, 1.07–2.79 and 1.74, 1.07–2.84, respectively), was associated with MS independently of clinical characteristics including BMI and waist-hip ratio (WHR). Similar results were obtained in the multivariate model with diet quality scores - MS was independently associated with higher scores within nHDI (2.2, 0.92–5.28). Individuals with MS were more likely to adhere to the western dietary pattern and have a poor diet quality in comparison to metabolically healthy peers, independently of BMI and WHR. It may imply that diet composition, as independent factor, plays a pivotal role in increasing metabolic risk. Professional dietary advice should be offered to all metabolically unhealthy patients, regardless of their body mass status.

Tài liệu tham khảo

The IDF consensus worldwide definition of the metabolic syndrome. 2006. https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome. Accessed 23 Mar 2019. Buscemi S, Chiarello P, Buscemi C, Corleo D, et al. Characterization of metabolically healthy obese people and metabolically unhealthy normal-weight people in a general population cohort of the ABCD study. J Diabetes Res. 2017. https://doi.org/10.1155/2017/9294038. Ruderman NB, Schneider SH, Berchtold P. The “metabolically-obese”, normal-weight individual. Am J Clin Nutr. 1981;34(8):1617–21. Sanyal D. Lean metabolic syndrome: an emerging concept. Indian J Endocrinol Metab. 2018. https://doi.org/10.4103/2230-8210.236782. Cefalu WT, Bray GA, Home PD, et al. Advances in the science, treatment, and prevention of the disease of obesity: reflections from a diabetes care editors’ expert forum. Diabetes Care. 2015. https://doi.org/10.2337/dc15-1081. De Lorenzo A, Martinoli R, Vaia F, et al. Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr Metab Cardiovas. 2006;16(8):513–23. Geetha L, Deepa M, Anjana RM, Mohan V. Prevalence and clinical profile of metabolic obesity and phenotypic obesity in Asian Indians. JDST. 2011;5(2):439–46. Thomas EL, Parkinson JR, Frost GS, Goldstone AP, Doré CJ, McCarthy JP, et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity. 2012;20(1):76–87. Aung K, Lorenzo C, Hinojosa MA, Haffner SM. Risk of developing diabetes and cardiovascular disease in metabolically unhealthy normal-weight and metabolically healthy obese individuals. J Clin Endocr Metab. 2014;99(2):462–8. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017. https://doi.org/10.1007/978-3-319-48382-5_1. Sarkar S, Paul BK, Chakraborty PK, Akhter S, Hossain MM, Hoque MR, Yesmin M. Association between metabolic syndrome and acute myocardial infarction (AMI). Mymensingh Med J. 2016;25(4):628–34 PMID: 27941721. Li X, Li X, Lin H, Fu X, Lin W, Li M, Gao Q. Metabolic syndrome and stroke: a meta-analysis of prospective cohort studies. J Clin Neurosci. 2017;40:34–8. Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012;97(7):2482–8. Bahadoran Z, Mirmiran P, Hosseini-Esfahani F, et al. Fast food consumption and the risk of metabolic syndrome after 3-years of follow-up: Tehran lipid and glucose study. Eur J Clin Nutr. 2013;67:1303–9. https://doi.org/10.1038/ejcn.2013.217. Ludwig DS. Lifespan weighed down by diet. JAMA. 2016;315(21):2269–70. Grundy SM, Abate N, Chandalia M. Diet composition and the metabolic syndrome: what is the optimal fat intake? Am J Med. 2002;113(9):25–9. https://doi.org/10.1016/s0002-9343(01)00988-3. Lustig RH. Metabolic syndrome and the ‘Western diet’: science and politics; in: Kiess W, Wabitsch M, Maffeis C, Sharma AM (eds): Metabolic syndrome and obesity in childhood and adolescence. Pediatr Adolesc Med. 2015;19:137–47. https://doi.org/10.1159/000368125. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1659–724. Michels KB, Schulze MB. Can dietary patterns help us detect diet–disease associations? Nutr Res Rev. 2005. https://doi.org/10.1079/NRR2005107. Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome. The atherosclerosis risk in communities study. Circulation. 2008;117:754–61. Deshmukh-Taskar PR, O’Neil CE, Nicklas TA, Yang SJ, Liu Y, Gustat J, Berenson GS. Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: the Bogalusa heart study. Public Health Nutr. 2009;12(12):2493–503. Suliga E, Kozieł D, Cieśla E, Rębak D, Głuszek S. Dietary patterns in relation to metabolic syndrome among adults in Poland: a cross-sectional study. Nutrients. 2017. https://doi.org/10.3390/nu9121366. Rodríguez-Monforte M, Sánchez E, Barrio F, Costa B, Flores-Mateo G. Metabolic syndrome and dietary patterns: a systematic review and meta-analysis of observational studies. Eur J Nutr. 2017;56(3):925–47. Shab-Bidar S, Golzarand M, Hajimohammadi M, Mansouri S. A posteriori dietary patterns and metabolic syndrome in adults: a systematic review and meta-analysis of observational studies. Public Health Nutr. 2018. https://doi.org/10.1017/S1368980018000216. Osadnik T, Osadnik K, Pawlas N, Strzelczyk JK, Kasperczyk J, Poloński L, Gąsior M. Metabolic and genetic profiling of young adults with and without family history of premature coronary artery disease (MAGNETIC). Study design and methodology. Arch Med Sci. 2018. https://doi.org/10.5114/aoms.2018.75895. Osadnik T, Pawlas N, Lonnie M, et al. Family history of premature coronary artery disease (P-CAD)-a non-modifiable risk factor? Dietary patterns of young healthy offspring of P-CAD patients: a case-control study (MAGNETIC project). Nutrients. 2018. https://doi.org/10.3390/nu10101488. WHO. Physical status: the use and interpretation of anthropometry: report of a World Health Organization (WHO) Expert Committee. Geneva: World Health Organization; 1995. Kant AK. Dietary patterns: biomarkers and chronic disease risk. Appl Physiol Nutr Metab. 2019;35:199–206 https://doi.org/10.1139/H10-005. Niedzwiedzka E, Wadolowska L, Kowalkowska J. Reproducibility of a non-quantitative food frequency questionnaire (62-item FFQ-6) and PCA-driven dietary pattern identification in 13–21-year-old females. Nutrients. 2019;11:2183. Drabińska N, Jarocka-Cyrta E, Markiewicz L, Krupa-Kozak U. The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: results of a randomized, placebo-controlled trial. Nutrients. 2018. https://doi.org/10.3390/nu10020201. Stachowska E, Ryterska K, Maciejewska D, Banaszczak M, Milkiewicz P, Milkiewicz M, Raszeja-Wyszomirska J, et al. Nutritional strategies for the individualized treatment of non-alcoholic fatty liver disease (NAFLD) based on the nutrient-induced insulin output ratio (NIOR). Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17071192. Krusinska B, Hawrysz I, Wadolowska L, Slowinska M, Biernacki M, Czerwinska A, Golota JJ. Associations of Mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: a case-control study. Nutrients. 2018. https://doi.org/10.3390/nu10040470. Jezewska-Zychowicz M, Gawecki J, Wadolowska L, Czarnocinska J, Galinski G, Kollajtis-Dolowy A, Roszkowski W, Wawrzyniak A, Przybylowicz K, Krusinska B, et al. Dietary habits and nutrition beliefs questionnaire and the manual for developing of nutritional data. The Committee of Human Nutrition, Polish Academy of Sciences. http://www.knozc.pan.pl/. ; Kowalkowska J, Wadolowska L, Czarnocinska J, Czlapka-Matyasik M, Galinski G, Jezewska-Zychowicz M, Bronkowska M, Dlugosz A, Laboda D, Wyka J. Reproducibility of a questionnaire for dietary habits, lifestyle and nutrition knowledge assessment (KomPAN) in polish adolescents and adults. Nutrients. 2018;10(12):1845–63. Panagiotakos DB, Pitsavos C, Skoumas Y, Stefanadis C. The association between food patterns and the metabolic syndrome using principal components analysis: the ATTICA study. J Am Diet Assoc. 2007;107(6):979–87. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168:1617–24. Ritchie SA, Connell JMC. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2008;17(4):319–26. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28(7):850–6. Fernandes AC, Rieger DK, Proença RPC. Perspective: public health nutrition policies should focus on healthy eating, not on calorie counting, even to decrease obesity. Adv Nutr. 2019. https://doi.org/10.1093/advances/nmz025. Drake I, Sonestedt E, Ericson U, Wallström P, Orho-Melander M. A Western dietary pattern is prospectively associated with cardio-metabolic traits and incidence of the metabolic syndrome. Br J Nutr. 2018;119(10):1168–76. Camacho S, Ruppel A. Is the calorie concept a real solution to the obesity epidemic? Glob Health Action. 2017;10(1):1289650. https://doi.org/10.1080/16549716.2017.1289650. Sánchez I, Reynoso-Camacho R, Salgado LM. The diet-induced metabolic syndrome is accompanied by whole-genome epigenetic changes. Genes Nutr. 2015;10(4):471. https://doi.org/10.1007/s12263-015-0471-5. Schüler R, Osterhoff MA, Frahnow T, et al. High-saturated-fat diet increases circulating angiotensin-converting enzyme, which is enhanced by the rs4343 polymorphism defining persons at risk of nutrient-dependent increases of blood pressure. J Am Heart Assoc. 2017;6(1):e004465. https://doi.org/10.1161/JAHA.116.004465. Stanhope KL, Goran MI, Bosy-Westphal A, King JC, Schmidt LA, Schwarz JM, Stice E, Sylvetsky AC, Turnbaugh PJ, Bray GA, Gardner CD, Havel PJ, Malik V, Mason AE, Ravussin E, Rosenbaum M, Welsh JA, Allister-Price C, Sigala DM, Greenwood MRC, Astrup A, Krauss RM. Pathways and mechanisms linking dietary components to cardiometabolic disease: thinking beyond calories. Obes Rev. 2018;19(9):1205–35. Moore C, Sabino V, Koob G, et al. Pathological overeating: emerging evidence for a compulsivity construct. Neuropsychopharmacol. 2017;42:1375–89. https://doi.org/10.1038/npp.2016.269. la Fleur S, Luijendijk M, van der Zwaal E, et al. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int J Obes. 2014;38:643–9. https://doi.org/10.1038/ijo.2013.159. Stice E, Yokum S, Blum K, Bohon C. Weight gain is associated with reduced striatal response to palatable food. J Neurosci. 2010;30:13105–9. Stice E, Yokum S. Gain in body fat is associated with increased striatal response to palatable food cues, whereas body fatstability is associated with decreased striatal response. J Neurosci. 2016;36:6949–56. Yokum S, Gearhardt AN, Harris JL, Brownell KD, Stice E. Individual differences in striatum activity to food commercials predict weight gain in adolescents. Obesity (Silver Spring). 2014;22:2544–51. Stice E, Burger KS, Yokum S. Reward region responsivity predicts future weight gain and moderating effects of the TaqIA allele. J Neurosci. 2015;35:10316–24. Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr. Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the multi-ethnic study of atherosclerosis (MESA). Diabetes Care. 2009;32:688–94. Sakurai M, Nakamura K, Miura K, et al. Sugar-sweetened beverage and diet soda consumption and the 7-year risk for type 2 diabetes mellitus in middle-aged Japanese men. Eur J Nutr. 2014;53:251–8. de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men. Am J Clin Nutr. 2011;93:1321–7. Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152:450–5. Shearer J, Swithers SE. Artificial sweeteners and metabolic dysregulation: lessons learned from agriculture and the laboratory. Rev Endocr Metab Disord. 2016;17:179–86. Fowler SP. Low-calorie sweetener use and energy balance: results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav. 2016;164:517–23. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013. https://doi.org/10.1126/science.1241214. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6 e7. EUGenMed Cardiovascular Clinical Study Group, Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E, Foryst-Ludwig A, Maas AH, Kautzky-Willer A, Knappe-Wegner D, Kintscher U, Ladwig KH, Schenck-Gustafsson K, Stangl V. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J. 2016. https://doi.org/10.1093/eurheartj/ehv598. Krieger N. Genders, sexes, and health: what are the connections—and why does it matter? Int J Epidemiol. 2003;32(4):652–7. Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol. 2013. https://doi.org/10.1152/ajpregu.00446.2012. Mattsson N, Rönnemaa T, Juonala M, Viikari JSA, Raitakari OT. The prevalence of the metabolic syndrome in young adults. The cardiovascular risk in young Finns study. J Intern Med. 2007;261:159–69. https://doi.org/10.1111/j.1365-2796.2006.01752.x. Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisle F. Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med. 2004;27(2):107–16. Kostopoulou V, Katsouyanni K. The truth-telling issue and changes in lifestyle in patients with cancer. J Med Ethics. 2006;32(12):693–7. https://doi.org/10.1136/jme.2005.015487. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, et al. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation. 2007;116:39–48 https://doi.org/10.1161/CIRCULATIONAHA.106.675355. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br Med J (Clin Res Ed). 1984;289(6454):1257–61. https://doi.org/10.1136/bmj.289.6454.1257. World Health Organization. (2011). Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008. World Health Organization. https://apps.who.int/iris/handle/10665/44583. Accessed 17 Feb 2020