Metabolic routing maintains the unique fatty acid composition of phosphoinositides

EMBO Reports - Tập 23 Số 7 - 2022
Yeun Ju Kim1, Nivedita Sengupta1, Mira Sohn1, Amrita Mandal1, Joshua G. Pemberton1, Uimook Choi2, Tamás Balla1
1Section on Molecular Signal Transduction Program for Developmental Neuroscience NICHD National Institutes of Health Bethesda MD USA
2Genetic Immunotherapy Section Laboratory of Clinical Immunology and Microbiology NIAID National Institutes of Health Bethesda MD USA

Tóm tắt

Abstract

Phosphoinositide lipids (PPIn) are enriched in stearic‐ and arachidonic acids (38:4) but how this enrichment is established and maintained during phospholipase C (PLC) activation is unknown. Here we show that the metabolic fate of newly synthesized phosphatidic acid (PA), the lipid precursor of phosphatidylinositol (PI), is influenced by the fatty acyl‐CoA used with preferential routing of the arachidonoyl‐enriched species toward PI synthesis. Furthermore, during agonist stimulation the unsaturated forms of PI(4,5P)2 are replenished significantly faster than the more saturated ones, suggesting a favored recycling of the unsaturated forms of the PLC‐generated hydrolytic products. Cytidine diphosphate diacylglycerol synthase 2 (CDS2) but not CDS1 was found to contribute to increased PI resynthesis during PLC activation. Lastly, while the lipid transfer protein, Nir2 is found to contribute to rapid PPIn resynthesis during PLC activation, the faster re‐synthesis of the 38:4 species does not depend on Nir2. Therefore, the fatty acid side‐chain composition of the lipid precursors used for PI synthesis is an important determinant of their metabolic fates, which also contributes to the maintenance of the unique fatty acid profile of PPIn lipids.

Từ khóa


Tài liệu tham khảo

10.1016/S0021-9258(19)77342-6

10.1016/j.jbior.2015.11.002

10.1371/journal.pone.0058425

10.1016/j.bbalip.2021.158985

10.1091/mbc.e07-07-0713

10.1152/physrev.00028.2012

10.1042/BST20190205

10.15252/embj.2021110038

10.1007/BF02538091

10.1042/bj2200345

10.1091/mbc.e16-09-0668

10.1016/j.celrep.2013.09.038

10.1074/jbc.M114.621375

10.1074/jbc.M708151200

10.1016/j.bbalip.2016.02.015

10.1021/bi5015634

10.1021/bi501250m

10.1016/j.bbamem.2011.07.018

10.1242/jcs.237388

10.1074/jbc.M110.117747

10.1247/csf.17003

10.7554/eLife.06328

10.1016/0005-2760(68)90109-4

10.1007/BF02532433

10.1016/S0022-2275(20)39458-X

10.1139/o71-195

10.1007/BF02544050

10.1083/jcb.200111013

10.1194/jlr.M018655

10.1038/srep44816

10.1016/B978-0-12-386487-1.00020-1

10.1038/embor.2013.113

10.1016/j.devcel.2011.09.005

10.1016/j.devcel.2015.04.028

10.1016/S0021-9258(17)42435-5

10.1091/mbc.e12-09-0673

10.1074/jbc.272.52.33402

10.1016/j.molcel.2017.09.024

10.1016/0304-4157(75)90017-9

10.1038/s41467-021-27648-z

10.1016/0003-9861(89)90323-8

10.1073/pnas.92.12.5317

10.3389/fcell.2016.00132

10.1083/jcb.201906130

10.1074/jbc.274.51.36181

10.1016/0005-2760(69)90078-2

10.1038/s41580-019-0180-9

10.1073/pnas.081536298

10.1038/ncb3339

10.1074/jbc.272.14.9503

10.1159/000351849

10.1146/annurev-cellbio-111315-125349

10.1074/jbc.M112.370155

10.1083/jcb.201710095

10.1111/j.1432-1033.1976.tb10394.x

10.1007/978-1-4939-9136-5_3

10.1016/j.bbalip.2017.02.002

10.1146/annurev-cellbio-100616-060608

10.1038/s41580-018-0071-5

10.1083/jcb.201906127