Metabolic engineering strategies for the production of beneficial carotenoids in plants

Sujata K. Bhatia1, Victor M. Ye2
1School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
2Department of Biological Sciences, University of Southern California, Los Angeles, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tang G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr. 91: 1468S–1473S (2010)

Sommer A. Vitamin A deficiency and clinical disease: An historical overview. J. Nutr. 138: 1835–1839 (2008)

West KP Jr. Extent of vitamin A deficiency among preschool children and women of reproductive age. J. Nutr. 132: 2857S–2866S (2002)

Carpentier S, Knaus M, Suh M. Associations between lutein, zeaxanthin, and age-related macular degeneration: An overview. Crit. Rev. Food Sci. 49: 313–326 (2009)

Fassett RG, Coombes JS. Astaxanthin in cardiovascular health and disease. Molecules 17: 2030–2048 (2012)

Mordente A, Guantario B, Meucci E, Silvestrini A, Lombardi E, Martorana GE, Giardina B, Böhm V. Lycopene and cardiovascular diseases: An update. Curr. Med. Chem. 18: 1146–1163 (2011)

Lichtenthaler HK. Biosynthesis, accumulation, and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth. Res. 92: 163–179 (2007)

Okada K. The biosynthesis of isoprenoids and the mechanisms regulating it in plants. Biosci. Biotech. Bioch. 75: 1219–1225 (2011)

Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. P. Jpn. Acad. B -Phys. 88: 41–52 (2012)

Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant. 5: 318–333 (2012)

Bick JA, Lange BM. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415: 146–154 (2003)

Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. P. Natl. Acad. Sci. USA 100: 6866–6871 (2003)

Cazzonelli C. Carotenoids in nature: Insights from plants and beyond. Funct. Plant Biol. 38: 833–847 (2011)

Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants: The role of Arabidopsis carotenoid β-ring hydroxylase CYP97A3. P. Natl. Acad. Sci. USA 103: 3474–3479 (2006)

Misawa N. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. Drugs 9: 757–771 (2011)

Alvarez V, Rodríguez-Sáiz M, de la Fuente JL, Gudiña EJ, Godio RP, Martín JF, Barredo JL. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genet. Biol. 4: 261–272 (2006)

Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl. Microbiol. Biot. 89: 555–571 (2011)

Cunningham FX Jr, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 23: 3055–3069 (2011)

Fujisawa M, Misawa N. Enrichment of carotenoids in flaxseed by introducing a bacterial phytoene synthase gene. Methods Mol. Biol. 643: 201–211 (2010)

Ducreux LJ, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J. Exp. Bot. 56: 81–89 (2005)

Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation, and co-suppression. Plant Mol. Biol. 22: 589–602 (1993)

Gady AL, Vriezen WH, Van de Wal MH, Huang P, Bovy AG, Visser RG, Bachem CW. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Mol. Breeding 29: 801–812 (2012)

Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM. Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19: 3194–3211 (2007)

Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305 (2000)

Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482–487 (2005)

Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2: e350 (2007)

Diretto G, Al-Babili S, Tavazza R, Scossa F, Papacchioli V, Migliore M, Beyer P, Giuliano G. Transcriptional-metabolic networks in β-carotene-enriched potato tubers: The long and winding road to the Golden phenotype. Plant Physiol. 154: 899–912 (2010)

Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA. Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol. 26: 139–145 (2008)

Potrykus I. Regulation must be revolutionized. Nature 466: 561 (2010)

Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. P. Natl. Acad. Sci. USA 105: 18232–18237 (2008)

Naqvi S, Zhu C, Farre G, Sandmann G, Capell T, Christou P. Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol. J. 9: 384–393 (2011)

Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 6: 13 (2006)

Römer S, Lübeck J, Kauder F, Steiger S, Adomat C, Sandmann G. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab. Eng. 4: 263–272 (2002)

Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y, Xu ZF, Sandmann G, Chen F. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 62: 3659–3669 (2011)

Huang J, Zhong Y, Sandmann G, Liu J, Chen F. Cloning and selection of carotenoid ketolase genes for the engineering of highyield astaxanthin in plants. Planta 236: 691–699 (2012)

Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, Choi SK, Misawa N, Miyake C. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55: 857–868 (2008)

Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature 21: 796–802 (2003)

Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J. Biotechnol. 140: 218–226 (2009)

Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab. Eng. 14: 19–28 (2012)

Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J. Exp. Bot. 60: 1319–1332 (2009)

Ha SH, Liang YS, Jung H, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK. Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol. J. 8: 928–938 (2010)

Farré G, Naqvi S, Sanahuja G, Bai C, Zorrilla-López U, Rivera SM, Canela R, Sandman G, Twyman RM, Capell T, Zhu C, Christou P. Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway. Methods Mol. Biol. 847: 419–435 (2012)

Farré G, Bai C, Twyman RM, Capell T, Christou P, Zhu C. Nutritious crops producing multiple carotenoids-a metabolic balancing act. Trends Plant Sci. 16: 532–540 (2011)

Mattoo AK, Shukla V, Fatima T, Handa AK, Yachha SK. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases. Adv. Exp. Med. Biol. 698: 122–143 (2011)

Ye VM, Bhatia SK. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnol. Lett. 34: 1405–1414 (2012)

Ye VM, Bhatia SK. Metabolic engineering for the production of clinically important molecules: ω-3 Fatty acids, artemisinin, and taxol. Biotechnol. J. 7: 20–33 (2012)