Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12

Nature Communications - Tập 9 Số 1
Huan Fang1, Dong Li1, Jie Kang1, Pingtao Jiang1, Jibin Sun1, Dawei Zhang2
1Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
2Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

Tóm tắt

AbstractThe only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production.

Từ khóa


Tài liệu tham khảo

Fang, H., Kang J. & Zhang, D. Microbial production of vitamin B12: a review and future perspectives. Microbial Cell Factories. 16, 15 (2017).

Martens, J. H., Barg, H., Warren, M. J. & Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).

Murooka, Y., Piao, Y., Kiatpapan, P. & Yamashita, M. Production of tetrapyrrole compounds and vitamin B12 using genetically engineering of Propionibacterium freudenreichii. An overview. Lait 85, 9–22 (2005).

F B, B C, J C, L D, S L-S, D T. Polypeptides involved in the biosynthesis of cobalamines and/or cobamides, DNA sequences coding for these polypeptides, and their preparation and use. Europe Patent EP0516647B1 (1998).

Piao, Y. et al. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J. Biosci. Bioeng. 98, 167–173 (2004).

Kiatpapan, P. & Murooka, Y. Construction of an expression vector for propionibacteria and its use in production of 5-aminolevulinic acid by Propionibacterium freudenreichii. Appl. Microbiol. Biotechnol. 56, 144–149 (2001).

Kiatpapan, P. et al. Characterization of pRGO1, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl. Environ. Microbiol. 66, 4688–4695 (2000).

Warren, M. J., Raux, E., Schubert, H. L. & Escalante-Semerena, J. C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19, 390–412 (2002).

Debussche, L., Thibaut, D., Cameron, B., Crouzet, J. & Blanche, F. Purification and characterization of cobyrinic acid a,c-diamide synthase from Pseudomonas denitrificans. J. Bacteriol. 172, 6239–6244 (1990).

Blanche, F., Maton, L., Debussche, L. & Thibaut, D. Purification and characterization of Cob(II)yrinic acid a,c-diamide reductase from Pseudomonas denitrificans. J. Bacteriol. 174, 7452–7454 (1992).

Blanche, F. et al. Biosynthesis of vitamin B12: stepwise amidation of carboxyl groups b, d, e, and g of cobyrinic acid a,c-diamide is catalyzed by one enzyme in Pseudomonas denitrificans. J. Bacteriol. 173, 6046–6051 (1991).

Escalante-Semerena, J. C. & Warren, M. J. Biosynthesis and Use of Cobalamin (B12). EcoSal Plus. 3 (2008).

Brushaber, K. R. CobD, a novel enzyme with L-Threonine-O-3-phosphate decarboxylase activity, is responsible for the synthesis of (R)-1-amino-2-propanol O-2-phosphate, a proposed new intermediate in Cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273, 2684–2691 (1998).

Fan, C. & Bobik, T. A. The PduX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B12 synthesis. J. Biol. Chem. 283, 11322–11329 (2008).

Roth, J. R., Lawrence, J. G., Rubenfield, M., Kieffer-Higgins, S. & Church, G. M. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol. 175, 3303–3316 (1993).

Maggio-Hall, L. A., Claas, K. R. & Escalante-Semerena, J. C. The last step in coenzyme B12 synthesis is localized to the cell membrane in bacteria and archaea. Microbiology 150, 1385–1395 (2004).

Taga, M. E., Larsen, N. A., Howard-Jones, A. R., Walsh, C. T. & Walker, G. C. BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446, 449–453 (2007).

Ko, Y. et al. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol. J. 9, 1526–1535 (2014).

Raux, E. et al. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J. Bacteriol. 178, 753–767 (1996).

Dong, H. et al. A newly isolated and identified vitamin B12 producing strain: Sinorhizobium meliloti 320. Bioprocess. Biosyst. Eng. 39, 1527–1537 (2016).

Debussche, L. et al. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J. Bacteriol. 174, 7445–7451 (1992).

Rodionov, D. A., Hebbeln, P., Gelfand, M. S. & Eitinger, T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188, 317–327 (2006).

Blanche, F. et al. Vitamin B12: how the problem of its biosynthesis was solved. Angew. Chem. Int. Ed. Engl. 34, 383–411 (1995).

Lawrence, A. D. et al. Identification, characterization, and structure/function analysis of a corrin reductase involved in adenosylcobalamin biosynthesis. J. Biol. Chem. 283, 10813–10821 (2008).

Hazra, A. B. et al. Anaerobic biosynthesis of the lower ligand of vitamin B12. Proc. Natl Acad. Sci. USA 112, 10792–10797 (2015).

Murooka, Y. & Tanaka, T. in Plant Adaptation to Environmental Change: Significance of Amino Acids and Their Derivatives (eds Anjum, N. A., Gill, S. S. & Gill, R.). (CAB International, Wallingford, Oxfordshire, 2014).

Sasaki, K., Watanabe, M., Tanaka, T. & Tanaka, T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58, 23–29 (2002).

Nishikawa, S. & Murooka, Y. 5-Aminolevulinic acid: production by fermentation, and agricultural and biomedical applications. Biotechnol. Genet. Eng. Rev. 18, 149–170 (2001).

Scott, A. I. & Roessner, C. A. Biosynthesis of cobalamin (vitamin B12). Biochem. Soc. Trans. 30, 613–620 (2002).

Frankenberg, N., Moser, J. & Jahn, D. Bacterial heme biosynthesis and its biotechnological application. Appl. Microbiol. Biotechnol. 63, 115–127 (2003).

Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).

Heldt, D. et al. Aerobic synthesis of vitamin B12: ring contraction and cobalt chelation. Biochem. Soc. Trans. 33, 815–819 (2005).

Na, D., Kim, T. Y. & Lee, S. Y. Construction and optimization of synthetic pathways in metabolic engineering. Curr. Opin. Microbiol. 13, 363–370 (2010).

Lundqvist, J. et al. The AAA(+) motor complex of subunits CobS and CobT of cobaltochelatase visualized by single particle electron microscopy. J. Struct. Biol. 167, 227–234 (2009).

Cheng, J., Poduska, B., Morton, R. A. & Finan, T. M. An ABC-type cobalt transport system is essential for growth of Sinorhizobium melilotiat trace metal concentrations. J. Bacteriol. 193, 4405–4416 (2011).

Li, K. T. et al. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess. Biosyst. Eng. 31, 605–610 (2008).

VY, B., NI, Z. & AA, E. Tetrapyrroles: diversity, biosynthesis, and biotechnology (review). Appl. Biochem. Microbiol. 34, 1–18 (1998).

Biedendieck, R. et al. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb. Biotechnol. 3, 24–37 (2010).

Xia, W., Chen, W., Peng, W. F. & Li, K. T. Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess. Biosyst. Eng. 38, 1065–1073 (2015).

Li, K. T. et al. Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresour. Technol. 99, 8516–8520 (2008).

Qin, G., Lin, J., Liu, X. & Cen, P. Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli. J. Biosci. Bioeng. 102, 316–322 (2006).

Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PloS ONE. 3, e3647 (2008).

Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

Qi, D. & Scholthof, K. B. A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. J. Virol. Methods 149, 85–90 (2008).

Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

Zhao, D., et al. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microbial Cell Factories. 15, 205 (2016).

Deery, E. et al. An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis. Nat. Chem. Biol. 8, 933–940 (2012).