Metabolic effects of physiological levels of caffeine in myotubes

Journal of Physiology and Biochemistry - Tập 74 - Trang 35-45 - 2017
Jamie K. Schnuck1,2, Lacey M. Gould1, Hailey A. Parry1,3, Michele A. Johnson1, Nicholas P. Gannon2, Kyle L. Sunderland1, Roger A. Vaughan1
1Department of Exercise Science, High Point University, High Point, USA
2School of Medicine, Medical College of Wisconsin, Milwaukee, USA.
3School of Kinesiology, Auburn University, Auburn, USA

Tóm tắt

Caffeine has been shown to stimulate multiple major regulators of cell energetics including AMP-activated protein kinase (AMPK) and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Additionally, caffeine induces peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitochondrial biogenesis. While caffeine enhances oxidative metabolism, experimental concentrations often exceed physiologically attainable concentrations through diet. This work measured the effects of low-level caffeine on cellular metabolism and gene expression in myotubes, as well as the dependence of caffeine’s effects on the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARβ/δ). C2C12 myotubes were treated with various doses of caffeine for up to 24 h. Gene and protein expression were measured via qRT-PCR and Western blot, respectively. Cellular metabolism was determined via oxygen consumption and extracellular acidification rate. Caffeine significantly induced regulators of mitochondrial biogenesis and oxidative metabolism. Mitochondrial staining was suppressed in PPARβ/δ-inhibited cells which was rescued by concurrent caffeine treatment. Caffeine-treated cells also displayed elevated peak oxidative metabolism which was partially abolished following PPARβ/δ inhibition. Similar to past observations, glucose uptake and GLUT4 content were elevated in caffeine-treated cells, however, glycolytic metabolism was unaltered following caffeine treatment. Physiological levels of caffeine appear to enhance cell metabolism through mechanisms partially dependent on PPARβ/δ.

Tài liệu tham khảo

Abbott MJ, Bogachus LD, Turcotte LP (2011) AMPKalpha2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle. J Appl Physiol 111(1):125–134. https://doi.org/10.1152/japplphysiol.00807.2010 Abbott MJ, Edelman AM, Turcotte LP (2009) CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(6):R1724–R1732. https://doi.org/10.1152/ajpregu.00179.2009 Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O'Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411. https://doi.org/10.1016/j.cmet.2012.01.001 Brenmoehl J, Hoeflich A (2013) Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 13(6):755–761. https://doi.org/10.1016/j.mito.2013.04.002 Egawa T, Hamada T, Kameda N, Karaike K, Ma X, Masuda S, Iwanaka N, Hayashi T (2009) Caffeine acutely activates 5 ′ adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metab Clin Exp 58(11):1609–1617. https://doi.org/10.1016/j.metabol.2009.05.013 Egawa T, Hamada T, Ma X, Karaike K, Kameda N, Masuda S, Iwanaka N, Hayashi T (2011) Caffeine activates preferentially alpha 1-isoform of 5 ′ AMP-activated protein kinase in rat skeletal muscle. Acta Physiol 201(2):227–238. https://doi.org/10.1111/j.1748-1716.2010.02169.x Evans MJ, Scarpulla RC (1990) NRF-1—a transactivator of nuclear-encoded respiratory genes in animal-cells. Genes Dev 4(6):1023–1034. https://doi.org/10.1101/gad.4.6.1023 Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25(4):1354–1366. https://doi.org/10.1128/MCB.25.4.1354-1366.2005 Graham TE (2001) Caffeine and exercise: metabolism, endurance and performance. Sports Med 31(11):785–807. https://doi.org/10.2165/00007256-200131110-00002 Gressner OA, Lahme B, Rehbein K, Siluschek M, Weiskirchen R, Gressner AM (2008) Pharmacological application of caffeine inhibits TGF-beta-stimulated connective tissue growth factor expression in hepatocytes via PPARgamma and SMAD2/3-dependent pathways. J Hepatol 49(5):758–767. https://doi.org/10.1016/j.jhep.2008.03.029 Hashimoto T, Sato K, Iemitsu M (2013) Exercise-inducible factors to activate lipolysis in adipocytes. J Appl Physiol 115(2):260–267. https://doi.org/10.1152/japplphysiol.00427.2013 Kim AR, Yoon BK, Park H, Seok JW, Choi H, JH Y, Choi Y, Song SJ, Kim A, Kim JW (2016) Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes. BMB Rep 49(2):111–115. https://doi.org/10.5483/BMBRep.2016.49.2.128 Lally JS, Jain SS, Han XX, Snook LA, Glatz JF, Luiken JJ, McFarlan J, Holloway GP, Bonen A (2012) Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice. Acta Physiol 205(1):71–81. https://doi.org/10.1111/j.1748-1716.2011.02396.x McConell GK, Ng GPY, Phillips M, Ruan Z, Macaulay SL, Wadley GD (2010) Central role of nitric oxide synthase in AICAR and caffeine-induced mitochondrial biogenesis in L6 myocytes. J Appl Physiol 108(3):589–595. https://doi.org/10.1152/japplphysiol.00377.2009 Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci 98(7):3820–3825. https://doi.org/10.1073/pnas.061035098 Miyake T, McDermott JC, Gramolini AO (2011) A method for the direct identification of differentiating muscle cells by a fluorescent mitochondrial dye. PLoS One 6(12):1–9 Nahle Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA, Zhang MQ, Das D, Abumrad NA (2008) CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. J Biol Chem 283(21):14317–14326. https://doi.org/10.1074/jbc.M706478200 Neels JG, Grimaldi PA (2014) Physiological functions of peroxisome proliferator-activated receptor beta. Physiol Rev 94(3):795–858. https://doi.org/10.1152/physrev.00027.2013 Ojuka EO (2004) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63(2):275–278. https://doi.org/10.1079/PNS2004339 Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO (2003) Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17(6):675–681. https://doi.org/10.1096/fj.02-0951com Ojuka EO, Jones TE, Han DH, Chen M, Wamhoff BR, Sturek M, Holloszy JO (2002) Intermittent increases in cytosolic Ca2+ stimulate mitochondrial biogenesis in muscle cells. Am J Physiol Endocrinol Metab 283(5):E1040–E1045. https://doi.org/10.1152/ajpendo.00242.2002 Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy JO (2002) Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca(2+). Am J Physiol Endocrinol Metab 282(5):E1008–E1013. https://doi.org/10.1152/ajpendo.00512.2001 Palkar PS, Borland MG, Naruhn S, Ferry CH, Lee C, Sk UH, Sharma AK, Amin S, Murray IA, Anderson CR, Perdew GH, Gonzalez FJ, Muller R, Peters JM (2010) Cellular and pharmacological selectivity of the peroxisome proliferator-activated receptor-beta/delta antagonist GSK3787. Mol Pharmacol 78(3):419–430. https://doi.org/10.1124/mol.110.065508 Quan HY, Kim DY, Chung SH (2013) Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. BMB Rep 46(4):207–212. https://doi.org/10.5483/BMBRep.2013.46.4.153 Rahimi R, Ghiasi S, Azimi H, Fakhari S, Abdollahi M (2010) A review of the herbal phosphodiesterase inhibitors: future perspective of new drugs. Cytokine 49(2):123–129. https://doi.org/10.1016/j.cyto.2009.11.005 Raney MA, Turcotte LP (2008) Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. J Appl Physiol 104(5):1366–1373. https://doi.org/10.1152/japplphysiol.01282.2007 Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813(7):1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019 Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286(1):81–89. https://doi.org/10.1016/S0378-1119(01)00809-5 Schnuck JK, Sunderland KL, Gannon NP, Kuennen MR, Vaughan RA (2016) Leucine stimulates PPARbeta/delta-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 128(1):1–7 Su SH, Shyu HW, Yeh YT, Chen KM, Yeh H, Su SJ (2013) Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol in Vitro 27(6):1830–1837. https://doi.org/10.1016/j.tiv.2013.05.011 Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA, Conn CA (2012) Effects of caffeine on metabolism and mitochondria biogenesis in rhabdomyosarcoma cells compared with 2,4-dinitrophenol. Nutr Metab Insights 13(5):59–70 Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Bio 20(5):1868–1876. https://doi.org/10.1128/MCB.20.5.1868-1876.2000 Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors—a potential regulatory link between nuclear and mitochondrial gene-expression and organelle biogenesis. Proc Natl Acad Sci 91(4):1309–1313. https://doi.org/10.1073/pnas.91.4.1309 Wang YX, Zhang CL, RT Y, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPAR delta. PLoS Biol 2(10):1532–1539 Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO (2007) Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282(26):18793–18799. https://doi.org/10.1074/jbc.M611252200