Meta-analytic support vector machine for integrating multiple omics data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bauer Y, Tedrow J, de Bernard S, Birker-Robaczewska M, Gibson K, et al.A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015; 52(2):217–31.
Begum F, Ghosh D, Tseng G, Feingold E. Comprehensive literature review and statistical considerations for gwas meta-analysis. 2012; 40(9):3777–84.
Ben-Hur A, Ong C, Sonnenburg S, Schölkopf B, Rätsch G. Support vector machines and kernels for computational biology. PLoS Comput Biol. 2008; 4(10):000173.
Bhattacharya S, Mariani T. Array of hope: expression profiling identifies disease biomarkers and mechanism. Biochem Soc Trans. 2009; 37(4):855–62.
Brown M, Grundy W, Lin D, Christianini N, Sugnet C, et al.Support vector machine classification of microarray gene expression data. Technical-Report University of California, Santa Cruz. 1999.
Cerami E, Demir E, Schultz N, Taylor B, Sander C. Automated network analysis identifies core pathways in glioblastoma. PLoS ONE. 2010; 12:e8918.
ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An Integrative Meta-analysis of MicroRNAs in Hepatocellular Carcinoma. Genomics Proteomics Bioinformatics. 2013; 11(6):354–67.
Fletcher J, Haber M, Henderson M, Norris M. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev. 2010; 10(2):147–56.
Guyon I, Weston J, Barnhill S. Gene selection for cancer classification using support vector machines. Mach Learn. 2002; 46:389–422.
Hlavac V, Brynychova V, Vaclavikova R, Ehrlichova M, Vrana D, et al. The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013; 14(5):515–29.
Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, et al.Reactome: A knowledgebase of biological pathways. Nucleic Acids Res. 2005; 33:428–32.
Kanehisa M, Goto S. Kyoto Encyclopedia of Genes and Genomes (KEGG). Nucleic Acids Res. 2000; 28:27–30.
Keshava T, Goel R, Kandasamy K, Keerthikumar S, Kuar S, et al.Human protein reference database-2009 update. Nucleic Acids Res. 2009; 37(Database issue):767–72.
Kim S. MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis. Bioinformatics. 2016; 32(13):1966–73.
Kim S. Weighted K-means support vector machine for cancer prediction. Springerplus. 2016; 5(1):1162.
Kim S, Oesterreich S, Kim S, Park Y, Tseng G. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization. Biostatistics. 2016. doi: 10.1093/biostatistics/kxw039
Konishi K, Gibson K, Lindell K, Richards T, Zhang Y, et al. Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009; 180(2):167–75.
Kwon MS, Kim Y, Lee S, Namkung J, Yun T, et al.Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer. BMC Genomics. 2015; 16(Suppl 9):S4.
Leonard G, Fojo T, Bates S. The Role of ABC Transporters in Clinical Practice. The Oncologist. 2003; 8:411–24.
Lepparanta O, Sens C, Salmenkivi K, Kinnula V, Keski-Oja J, et al.Regulation of TGF-beta storage and activation in the human idiopathic pulmonary fibrosis lung. Cell Tissue Res. 2012; 3:491–503.
Li J, Tseng G. An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies. Ann Appl Stat. 2011; 5(2A):994–1019.
Li Q, Wang S, Huang C, Yu M, Shao J. Meta-analysis based variable selection for gene expression data. Biometrics. 2014; 70:872–80.
Ma X, Wang Z, Ryan P, Isakoff S, Barmettler A, et al.A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004; 5:607–16.
Ma S, Sung J, Magis A, Wang Y, Geman D, et al.Measuring the effect of inter-study variability on estimating prediction error. PLoS ONE. 2014; 9(10):110840.
Madhavan S, Gusev Y, Natarajan T, Song L, Bhuvaneshwar K, et al.Genome-wide multi-omics profiling of colorectal cancer identifies immune determinants strongly associated with relapse. Front Genet. 2013; 4:236.
MAQC Consortium. The microarray quality control (maqc) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006; 24(9):1151–61.
Marchionni L, Afsari B, Geman D, Leek J. A simple and reproducible breast cancer prognostic test. BioMed Central Genomics. 2013; 14:336.
Nakanishi T, Ross D. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer. 2012; 31(2):73–99.
Noble W. Support vector machine applications in computational biology, Kernel Methods in Computational Biology. Cambridge: MIT Press; 2004, pp. 71–92.
Paik S, Shak S, Tang G, Kim C, Baker J, et al.A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004; 351(27):2817–26.
Pardo A, Smith K, Abrams J, Coffman R, Bustos M, et al.CCL18/DC-CK-1/PARC up-regulation in hypersensitivity pneumonitis. J Leukoc Biol. 2004; 70:610–6.
Pardo A, Selman M. Role of matrix metaloproteases in idiopathic pulmonary fibrosis. Fibrogenesis Tissue Repair. 2012; 5(Suppl 1):S9.
Prasse A, Pechkovsky D, Toews G, Jungraithmayr W, Kollert F, et al.A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. 2006; 173:781–92.
Prasse A, Pechkovsky D, Toews G, Schafer M, Eggeling S, et al.CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthristis & Rheumatism. 2007; 56(5):1685–93.
Rajamani D, Bhasin M. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med. 2016; 8:38.
Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang C, et al.Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci. 2001; 98(26):15149–54.
Rhodes D, Barrette T, Rubin M, Ghosh D, Chinnaiyan A. Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 2002; 62:4427–33.
Richardson S, Tseng G, Sun W. Statistical methods in integrative genomics. Annu Rev Stat Its Appl. 2016; 3(1):181–209.
Sanders Y, Ambalavanan N, Halloran B, Zhang X, Liu H, et al.Altered DNA Methylation Profile in Idiopathic Pulmonary. Fibrosis Am J Respir Crit Care Med. 2012; 186(6):525–35.
Schaefer C, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow K. PID: The pathway interaction database. Nucleic Acids Res. 2009; 37(Database issue):674–9.
Song C, Tseng G. Hypothesis setting and order statistic for robust genomic meta-analysis. Ann Appl Stat. 2014; 8(2):777–800.
Strieter R, Gomperts B, Keane M. The role of CXC chemokines in pulmonary fibrosis. J Clin Invest. 2007; 117(3):549–56.
Veer L, Dai H, Vijver M, He Y, Hart A, et al.Gene expression profilng predicts clinical outcome of breast cance. Nature. 2002; 415:530–6.
Vij R, Noth I. Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. Transl Res. 2012; 159(4):218–27.
Vijver M, He Y, Veer L, Dai H, Hart A, et al.A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002; 347(25):1999–2009.
Wang H, Zhou L, Gupta A, Vethanayagam R, Zhang Y, et al.Regulation of BCRP/ABCG2 expression by progesterone and beta-estradiol in human placental BeWo cells. Am J Physiol Endocrinol Metab. 2006; 290(5):E798–807.
Wang X, Lin Y, Song C, Sibille E, Tseng G. Detecting disease-associated genes with confounding variable adjustment and the impact on genomic meta-analysis: With application to major depressive disorder. BioMed Central Bioinformatics. 2012; 13:52.
Zhang H, Ahn J, Lin X, Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics. 2006; 22(1):88–95.
Zhang Y, Schnabel C, Schroeder B, Jerevall P, Jankowitz R, et al.Breast cancer index identifies early-stage estrogen receptor–positive breast cancer patients at risk for early- and late-distant recurrence. Clin Cancer Res. 2013; 19(15):4196–205.