Mesenteric lymph node CD11b CD103+ PD‐L1High dendritic cells highly induce regulatory T cells

Immunology - Tập 152 Số 1 - Trang 52-64 - 2017
Aya Shiokawa1, Ryutaro Kotaki1, Tomohiro Takano1, Haruyo Nakajima‐Adachi1, Satoshi Hachimura1
1Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Tóm tắt

Summary

Dendritic cells (DCs) in mesenteric lymph nodes (MLNs) induce Foxp3+ regulatory T cells to regulate immune responses to beneficial or non‐harmful agents in the intestine, such as commensal bacteria and foods. Several studies in MLN DCs have revealed that the CD103+ DC subset highly induces regulatory T cells, and another study has reported that MLN DCs from programmed death ligand 1 (PD‐L1) ‐deficient mice could not induce regulatory T cells. Hence, the present study investigated the expression of these molecules on MLN CD11c+ cells. Four distinct subsets expressing CD103 and/or PD‐L1 were identified, namely CD11b+ CD103+ PD‐L1High, CD11b CD103+ PD‐L1High, CD11b CD103+ PD‐L1Low and CD11b+ CD103 PD‐L1Int. Among them, the CD11b CD103+ PD‐L1High DC subset highly induced Foxp3+ T cells. This subset expressed Aldh1a2 and Itgb8 genes, which are involved in retinoic acid metabolism and transforming growth factor‐β (TGF‐β) activation, respectively. Exogenous TGF‐β supplementation equalized the level of Foxp3+ T‐cell induction by the four subsets whereas retinoic acid did not, which suggests that high ability to activate TGF‐β is determinant for the high Foxp3+ T‐cell induction by CD11b CD103+ PD‐L1High DC subset. Finally, this subset exhibited a migratory DC phenotype and could take up and present orally administered antigens. Collectively, the MLN CD11b CD103+ PD‐L1High DC subset probably takes up luminal antigens in the intestine, migrates to MLNs, and highly induces regulatory T cells through TGF‐β activation.

Từ khóa


Tài liệu tham khảo

10.1007/s12026-012-8308-4

10.1111/j.1600-065X.2011.01017.x

10.1038/mi.2012.4

10.1080/17402520600876804

10.1111/imr.12175

10.1111/imr.12174

10.1111/imr.12173

10.1111/imr.12170

10.1111/imr.12163

10.1038/ni.2554

10.1016/j.immuni.2008.05.010

10.1126/science.aac5560

10.1084/jem.20052016

10.1016/j.immuni.2011.01.016

10.1053/j.gastro.2011.09.015

10.1038/nri3442

10.1111/j.0105-2896.2005.00285.x

10.1016/j.it.2011.06.003

10.1084/jem.20070590

10.1126/science.1145697

10.1084/jem.20070719

10.1093/intimm/dxp003

10.1182/blood-2009-09-245274

10.1016/j.immuni.2004.08.011

10.1084/jem.20080414

10.1053/j.gastro.2011.06.057

10.1053/j.gastro.2011.06.076

10.1172/JCI43786

10.1172/JCI43796

10.1136/gut.2009.185108

10.1016/j.immuni.2013.01.009

10.1038/nature10863

10.1016/j.immuni.2013.12.012

10.1126/science.1102901

10.1084/jem.20091925

10.1038/mi.2012.53

10.1038/mi.2014.40

10.1182/blood-2009-10-250472

10.1126/science.2125367

10.1016/j.imbio.2014.12.022

10.3389/fimmu.2012.00214

10.3389/fimmu.2014.00326

10.1016/j.immuni.2009.08.027

10.1038/srep23505

10.4049/jimmunol.1202798

10.1002/eji.201444859

10.1002/eji.201242847

10.4049/jimmunol.176.2.803

10.1038/nri3738

10.1038/mi.2015.77

10.1038/mi.2015.118

10.1016/j.immuni.2017.01.003

10.1084/jem.20070602

10.4049/jimmunol.1002701

10.1038/ni.2370