Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction

Journal of Biomedical Science - Tập 13 - Trang 47-58 - 2005
Kou-Gi Shyu1,2, Bao-Wei Wang1, Huei-Fong Hung1, Chih-Chuan Chang1, Daniel Tzu-Bi Shih3
1Division of Cardiology, Department of Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
2Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
3Graduate Institute of Cell and Molecular Biology and Center for Stem Cell Research, Taipei Medical University, Taipei, Taiwan

Tóm tắt

Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.

Tài liệu tham khảo

Perin E.C., Geng Y.J., Willerson J.T. (2003) Adult stem cell type in perspective. Circulation 107: 935–938 Al-Radi O.O., Rao V.R., Li R.K., Yau T., Weisel R.D. (2003) Cardiac cell transplantation: closer to bedside. Ann Thorac Surg 75: S674-S677 Orlic D., Hill J.M., Arai A.E. (2002) Stem cell for myocardial regeneration. Circ Res 91: 1092–1102 Rafii S., Lyden D. (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9: 702–712 Weissman I.L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287: 1442–1446 Kaji E.H., Leiden J.M. (2001) Gene and stem cell therapies. JAMA 285: 545–550 Fukuda D. (2001) Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs 25: 187–193 Sussman M. (2001) Cardiovascular biology. Hearts and bones. Nature 410: 640–641 Melo L.G., Pachori A.S., Kong D., Gnecchi M., Wang K., Pratt R.E., Dzau V.J. (2004) Gene and cell-based therapies for heart disease. FASEB J 18: 648–663 Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147 Shyu K.G., Chang H., Isner J.M. (2003) Synergistic effect of angiopoietin-1 and vascular endothelial growth factor on neoangiogenesis in hypercholesterolemic rabbit model with acute hindlimb ischemia. Life Science 73: 563–579 Michael L.H., Entman M.L., Hartley C.J., Youker K.A., Zhu J., Hall S.R., Hawkins H.K., Berens K., Ballantyne C.M. (1995) Myocardial ischemia and reperfusion: a murine model. Am J Physiol 269: H2147–H2154 Shyu K.G., Wang M.T., Wang B.W., Chang C.C., Leu J.G., Kuan P., Chnag H. (2002) Intramyocardial injection of naked DNA encoding HIF-1 \(\upalpha\) /VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 54: 576–583 Zhang S., Wang D., Estrov Z., Ray S., Willerson J.T., Yeh E.T.H. (2004) Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 110: 3803–3807 Murry C.E., Soonpaa M.H., Relnecke H., Nakajima H., Nakajima H.O., Rubart M. et al. (2004) Hematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664–668 Siddiqui A.J., Blomberg P., Wardell E., Hellgren I., Eskandarpour M., Islam K.B., Sylven C. (2003) Combination of angiopoietin-1 and vascular endothelial growth factor gene therapy enhances arteriogenesis in the ischemic myocardium. Biochem Biophys Res Commun 310: 1002–1009 Takahashi K., Ito Y., Morikawa M., Kobune M., Huang J., Tsukamoto M., Sasaki K., Nakamura K., Dehari H., Ikeda K., Uchida H., Hirai S., Abe T., Hamada H. (2003) Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction. Mol Ther 8: 584–592 Chachques J.C., Durate F., Cattadori B., Shafy A., Lila N., Chatellier G., Fabiani J.N., Carpentier A.F. (2004) Angiogenic growth factors and/or cellular therapy for myocardial regeneration: A comparative study. J Thorac Cardiovasc Surg 128: 245–253 Henry T.D., Annex B.H., McKendall G.R., Azrin M.A., Lopez J.J., Giordano F.J., Shah P.K., Willerson J.T., Benza R.L., Berman D.S., Gibson C.M., Bajamonde A., Rundle A.C., Fine J., McCluskey E.R. (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107: 1359–1365 Rajagopalan S., Mohler E.R., Lederman R.J., Mendelsohn F.O., Saucedo J.F., Goldman C.K., Blebea J., Macko J., Kessler P.D., Rasmussen H.S., Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108: 1933–1938 Rehman J., Li J., Orschell C.M., March K.L. (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–9 Ponyje J., Zivny J., Sefc L., Plasilova M., Pytlik R., Necas E. (2003) Expression of genes regulating angiogenesis in human circulating hematopoietic cord blood CD34+/CD133+ cells. Euro J Hematol 70: 143–150 Kinnaird T., Stabile E., Burnett M.S., Lee C.W., Barr S., Fuchs S., Epstein S.E. (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94: 678–685 Mangi A.A., Noiseux N., Kong D., He H., Rezvani M., Ingwall J.S., Dzau V.J. (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infracted hearts. Nat Med 9: 1195–1201 Tang Y.L., Zhao Q., Zhang Y.C., Cheng L., Liu M., Shi J., Yang Y.Z., Pan C., Ge J., Phillips M.I. (2004) Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regulatory Peptides 117: 3–10 Pittenger M.F., Martin B.J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95: 9–20 Nagaya N., Fujii T., Iwase T., Ohgushi H., Itoh T., Uematsu M., Yamagishi M., Mori H., Kangawa K., Kitamura S. (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287: H2670–H2676 Strauer B.E., Brehm M., Zeus T., Kostering M., Hernandez A., Sorg R.V., Kogler G., Wernet P. (2002) Repair of infracted myocardium by autolous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913–1918 Stamm C., Westphal B., Kleine H.D., Petzsch M., Kittner C., Klinge H., Schumichen C., Nienaber C.A., Freund M., Steinhoff G. (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45–46 30.Tse H.F., Kwong Y.L., Chan J.K.F., Lo G., Ho C.L., Lau C.P. (2003) Angiogenesis in ischemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361: 47–49 Perin E.C., Dohmann H.F.R., Borojevic R., Silva S.A., Sousa A.L., Mesquita C.T., Rossi M.I., Carvalho A.C., Dutra H.S., Dohmann H.J., Silva G.V., Belem L., Vivacqua R., Rangel F.O., Esporcatte R., Geng Y.J., Vaughn W.K., Assad J.A., Mesquita E.T., Willerson J.T. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294–2302 Carmeliet P. (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis?. Nat Med 6: 1102–1103 Lee R.J., Springer M.L., Blanco-Bose W.E., Shaw R., Ursell P.C., Blau H.M. (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102: 898–901 Epstein S.E., Kornowski R., Fuchs S., Dvorak H.F. (2001) Angiogenesis therapy: amidst the hype, the neglected potential for serious side effect. Circulation 104: 115–119 Heeschen C., Lehmann R., Honold J., Assmus B., Aicher A., Walter D.H., Martin H., Zeiher A.M., Dimmeler S. (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109: 1615–1622 Rauscher F.M., Goldschmidt-Clermont P.J., Davis B.H., Wang T., Gregg D., Ramaswami P., Pippen A.M., Annex B.H., Dong C., Taylor D.A. (2003) Aging, progentior cell exhaustion, and atherosclerosis. Circulation 108: 457–463 Vasa M., Fichtlscherer S., Aicher A., Adler K., Urbich C., Martin H., Zeiher A.M., Dimmeler S. (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1–E7