Meeting report: the 5th International expert symposium in Fukushima on radiation and health

Springer Science and Business Media LLC - Tập 16 - Trang 1-5 - 2017
Vladimir A. Saenko1, Geraldine A. Thomas2, Shunichi Yamashita1,3
1Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
2Imperial College London, Charing Cross Hospital, London, UK
3Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan

Tóm tắt

The symposium entitled “Chernobyl +30, Fukushima +5: Lessons and Solutions for Fukushima’s Thyroid Question” was held in September, 2016 in Fukushima. The aim of the Symposium was to revisit and recapitulate evidence from the studies in Chernobyl in order to share multidisciplinary opinions and views on the likely reason for the high rate of thyroid cancer detected by the Thyroid Ultrasound Examination program in Fukushima Prefecture. The high prevalence of thyroid cancer in young individuals causes concerns among Fukushima residents and the general public that it might be due to putative radiation exposure from the Fukushima Daiichi Nuclear Power Plant accident. Twenty-six experts from Japan and abroad, including participants affiliated with international organizations, reviewed the results of radiation epidemiology investigations in Chernobyl, presented clinical experience of diagnosis, treatment and follow-up of patients with radiation-related thyroid cancer, and scrutinized the findings on thyroid cancer in Fukushima. Conclusions drawn at the symposium included understanding that in contrast to Chernobyl, doses to the public from the accident in Fukushima were too low to give rise to a discernible excess risk for thyroid cancer. The high detection rate of thyroid cancer and benign abnormalities resulted from the use of highly sensitive ultrasound equipment and sophisticated protocol of examination used in the Thyroid Ultrasound Examination, and therefore not attributable to radiation. Coordinated efforts will be necessary to avoid overdiagnosis and overtreatment, which may carry its own health disbenefits. Clear communication to the screening participants and their families is recommended in regard to why the examination is being conducted and to explain the likely outcomes and risks, including the means and options for treatment if a thyroid disorder is detected.

Tài liệu tham khảo

International Atomic Energy Agency. The Use of the International Nuclear and Radiological Event Scale (INES) for event communication. 2014. http://www-pub.iaea.org/MTCD/Publications/PDF/INES_web.pdf. Accessed 12 Nov 2016. International Atomic Energy Agency. The Fukushima Daiichi accident. 2015. http://www-pub.iaea.org/books/IAEABooks/10962/The-Fukushima-Daiichi-Accident. Accessed 12 Nov 2016. Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical Univeristy. Office of International Cooperation. 2012. http://fmu-global.jp/fukushima-health-management-survey/#report. Accessed 12 Nov 2016. Yasumura S, Hosoya M, Yamashita S, Kamiya K, Abe M, Akashi M, et al. Study protocol for the Fukushima health management survey. J Epidemiol. 2012;22:375–83. Suzuki S, Suzuki S, Fukushima T, Midorikawa S, Shimura H, Matsuzuka T, et al. Comprehensive survey results of childhood thyroid ultrasound examinations in Fukushima in the first four years after the Fukushima Daiichi nuclear power plant accident. Thyroid. 2016;26:843–51. Brenner AV, Tronko MD, Hatch M, Bogdanova TI, Oliynik VA, Lubin JH, et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ Health Perspect. 2011;119:933–9. Bogdanova TI, Zurnadzhy LY, Nikiforov YE, Leeman-Neill RJ, Tronko MD, Chanock S, et al. Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. Br J Cancer. 2015;113:1556–64. Ivanov VK, Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Vlasov OK, et al. Radiation-epidemiological studies of thyroid cancer incidence in Russia after the Chernobyl accident (estimation of radiation risks, 1991–2008 follow-up period). Radiat Prot Dosimetry. 2012;151:489–99. Nagataki S, Takamura N. Radioactive doses - predicted and actual - and likely health effects. Clin Oncol (R Coll Radiol). 2016;28:245–54. Ishikawa T, Yasumura S, Ozasa K, Kobashi G, Yasuda H, Miyazaki M, et al. The Fukushima health management survey: estimation of external doses to residents in Fukushima prefecture. Sci Rep. 2015. doi:10.1038/srep12712. Tokonami S, Hosoda M, Akiba S, Sorimachi A, Kashiwakura I, Balonov M. Thyroid doses for evacuees from the Fukushima nuclear accident. Sci Rep. 2012. doi:10.1038/srep00507. Ivanov VK, Kashcheev VV, Chekin SY, Maksioutov MA, Tumanov KA, Meniailo AN, et al. Thyroid cancer: lessons of Chernobyl and projections for Fukushima. Radiat Risk (Russian). 2016;25:5–19. Bogdanova T, Zurnadzhy L, LiVolsi VA, Williams ED, Ito M, Nakashima M, et al. Thyroid cancer pathology in Ukraine after Chernobyl. In: Tronko M, Bogdanova T, Saenko V, Thomas GA, Likhtarov I, Yamashita S, editors. Thyroid cancer in ukraine after chernobyl. dosimetry, epidemiology, pathology, molecular biology. Nagasaki: IN-TEX; 2014. p. 65–108. Fridman M, Lam AK, Krasko O, Schmid KW, Branovan DI, Demidchik Y. Morphological and clinical presentation of papillary thyroid carcinoma in children and adolescents of Belarus: the influence of radiation exposure and the source of irradiation. Exp Mol Pathol. 2015;98:527–31. Rumyantsev PO, Saenko VA, Ilyin AA, Stepanenko VF, Rumyantseva UV, Abrosimov AY, et al. Radiation exposure does not significantly contribute to the risk of recurrence of Chernobyl thyroid cancer. J Clin Endocrinol Metab. 2011;96:385–93. Reiners C, Biko J, Haenscheid H, Hebestreit H, Kirinjuk S, Baranowski O, et al. Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2013;98:3039–48. Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical Univeristy. Office of International Cooperation. The 23rd Prefectural Oversight Committee Meeting for Fukushima Health Management Survey. 2016. http://fmu-global.jp/?wpdmdl=1632. Accessed 12 Nov 2016. Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical Univeristy. Office of International Cooperation. The 24th Prefectural Oversight Committee Meeting for Fukushima Health Management Survey. 2016. http://fmu-global.jp/?wpdmdl=1889. Accessed 12 Nov 2016. Tronko MD, Saenko VA, Shpak VM, Bogdanova TI, Suzuki S, Yamashita S. Age distribution of childhood thyroid cancer patients in Ukraine after Chernobyl and in Fukushima after the TEPCO-Fukushima Daiichi NPP accident. Thyroid. 2014;24:1547–8. Takamura N, Orita M, Saenko V, Yamashita S, Nagataki S, Demidchik Y. Radiation and risk of thyroid cancer: Fukushima and Chernobyl. Lancet Diabetes Endocrinol. 2016;4:647. Drozd VM, Saenko VA, Brenner AV, Drozdovitch V, Pashkevich VI, Kudelsky AV, et al. Major factors affecting incidence of childhood thyroid cancer in Belarus after the Chernobyl accident: do nitrates in drinking water play a role? PLoS One. 2015;10:e0137226. Ahn HS, Welch HG. South Korea’s thyroid-cancer “epidemic”--turning the tide. N Engl J Med. 2015;373:2389–90. World Health Organization. Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami, based on a preliminary dose estimation. 2013. http://www.who.int/ionizing_radiation/pub_meet/fukushima_risk_assessment_2013/en/. Accessed 12 Nov 2016. United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and effects of ionizing radiation. UNSCEAR 2013 Report to the General Assembly with scientific annexes. Volume I, Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 Great east-Japan earthquake and tsunami. 2014. http://www.unscear.org/docs/publications/2013/UNSCEAR_2013_GA-Report.pdf. Accessed 12 Nov 2016. International Atomic Energy Agency. Radiation protection and safety of radiation sources: international basic safety standards. IAEA safety standards series no. GSR part 3. Vienna: International Atomic Energy Agency; 2014.