Công nghệ Robotics Y tế cho Hình ảnh Siêu âm: Các Hệ thống Hiện tại và Xu hướng Tương lai
Tóm tắt
Bài tổng quan này cung cấp cái nhìn tổng quát về các hệ thống siêu âm robot hiện đại mới nổi trong năm năm qua, nhấn mạnh trạng thái và hướng phát triển tương lai của chúng. Các hệ thống này được phân loại dựa trên mức độ tự chủ của robot (LORA).
Các hệ thống điều khiển từ xa cho thấy mức độ trưởng thành kỹ thuật cao nhất. Các hệ thống hỗ trợ hợp tác và tự động vẫn đang ở giai đoạn nghiên cứu, với trọng tâm là xử lý hình ảnh siêu âm và chiến lược thích ứng lực. Tuy nhiên, thiếu các yếu tố quan trọng là các nghiên cứu lâm sàng và các chiến lược an toàn phù hợp. Nghiên cứu trong tương lai có khả năng sẽ tập trung vào trí tuệ nhân tạo và thực tế ảo/thực tế tăng cường để cải thiện việc hiểu hình ảnh và công thái học.
Một bài tổng quan về các hệ thống siêu âm robot được trình bày, trong đó đầu tiên các thông số kỹ thuật cơ bản được nêu rõ. Tiếp theo, tài liệu của năm năm qua được phân loại thành điều khiển từ xa, hỗ trợ hợp tác hoặc hệ thống tự động dựa trên LORA. Cuối cùng, các xu hướng tương lai của hệ thống siêu âm robot được xem xét với trọng tâm vào trí tuệ nhân tạo và thực tế ảo/thực tế tăng cường.
Từ khóa
Tài liệu tham khảo
Evans K, Roll S, Baker J. Work-related musculoskeletal disorders (WRMSD) among registered diagnostic medical sonographers and vascular technologists: a representative sample. J Diagn Med Sonogr. 2009;25:287–99. https://doi.org/10.1177/8756479309351748.
Harrison G, Harris A. Work-related musculoskeletal disorders in ultrasound: can you reduce risk? Ultrasound. 2015;23:224–30. https://doi.org/10.1177/1742271X15593575.
Priester AM, Natarajan S, Culjat MO. Robotic ultrasound systems in medicine. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:507–23. https://doi.org/10.1109/TUFFC.2013.2593.
Swerdlow DR, Cleary K, Wilson E, Azizi-Koutenaei B, Monfaredi R. Robotic arm-assisted sonography: review of technical developments and potential clinical applications. AJR Am J Roentgenol. 2017;208:733–8. https://doi.org/10.2214/AJR.16.16780.
Beer JM, Fisk AD, Rogers WA. Toward a framework for levels of robot autonomy in human-robot interaction. J Hum Robot Interact. 2014;3:74–99. https://doi.org/10.5898/JHRI.3.2.Beer.
Elek R, Nagy TD, Nagy DA, Takács B, Galambos P, Rudas I, et al. Robotic platforms for ultrasound diagnostics and treatment. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE; 2017. p. 1752–1757. https://doi.org/10.1109/SMC.2017.8122869.
Yip M, Das N. Robot autonomy for surgery. In: Patel R, editor. The Encyclopedia of Medical Robotics; 2018. p. 281–313. https://doi.org/10.1142/9789813232266_0010.
Wang S, Housden RJ, Noh Y, Singh A, Lindenroth L, Liu H, et al. Analysis of a customized clutch joint designed for the safety management of an ultrasound robot. Appl Sci. 2019;9:1900. https://doi.org/10.3390/app9091900.
Sandoval J, Laribi MA, Zeghloul S, Arsicault M, Guilhem J-M. Cobot with prismatic compliant joint intended for doppler sonography. Robotics. 2020;9:14. https://doi.org/10.3390/robotics9010014.
Haddadin S, De Luca A, Albu-Schaffer A. Robot collisions: a survey on detection, isolation, and identification. IEEE Trans Robot. 2017;33:1292–312. https://doi.org/10.1109/TRO.2017.2723903.
MGIUS-R3 robotic ultrasound system [Internet]. Available from: https://en.mgitech.cn/products/instruments_info/11/.
Vieyres P, Novales C, Rivas R, Vilcahuaman L, Sandoval Arévalo JS, Clark T, et al. The next challenge for WOrld wide Robotized Tele-Echography eXperiment (WORTEX 2012): from engineering success to healthcare delivery. Congreso Peruano de Ingeniería Biomédica, Bioingeniería, Biotecnología y Física Médica: Tumi II 2013. 2013. p. 205–10. Available from: http://www.congreso.pucp.edu.pe/tumi/docs/papers_revision.pdf.
Wang J, Peng C, Zhao Y, Ye R, Hong J, Huang H, et al. Application of a robotic tele-echography system for COVID-19 pneumonia. J Ultrasound Med. 2021;40:385–90. https://doi.org/10.1002/jum.15406.
Avgousti S, Panayides AS, Jossif AP, Christoforou EG, Vieyres P, Novales C, et al. Cardiac ultrasonography over 4G wireless networks using a tele-operated robot. Healthc Technol Lett. 2016;3:212–7. https://doi.org/10.1049/htl.2016.0043.
Georgescu M, Sacccomandi A, Baudron B, Arbeille PL. Remote sonography in routine clinical practice between two isolated medical centers and the university hospital using a robotic arm: a 1-year study. Telemed J E Health. 2016;22:276–81. https://doi.org/10.1089/tmj.2015.0100.
Adams SJ, Burbridge BE, Badea A, Langford L, Vergara V, Bryce R, et al. Initial experience using a telerobotic ultrasound system for adult abdominal sonography. Can Assoc Radiol J. 2017;68:308–14. https://doi.org/10.1016/j.carj.2016.08.002.
• Adams SJ, Burbridge BE, Badea A, Kanigan N, Bustamante L, Babyn P, et al. A crossover comparison of standard and telerobotic approaches to prenatal sonography. J Ultrasound Med. 2018;37:2603–12. https://doi.org/10.1002/jum.14619Describes the feasibility of a commercial telerobotic system to remotely perform prenatal sonographic examinations.
Stollnberger G, Moser C, Giuliani M, Stadler S, Tscheligi M, Szczesniak-Stanczyk D, et al. User requirements for a medical robotic system: enabling doctors to remotely conduct ultrasonography and physical examination. 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE; 2016. p. 1156–61. https://doi.org/10.1109/ROMAN.2016.7745254.
Arent K, Cholewiński M, Chojnacki Ł, Domski W, Drwięga M, Jakubiak J, et al. Selected topics in design and application of a robot for remote medical examination with the use of ultrasonography and ascultation from the perspective of the REMEDI project. J Autom Mob Robot Intell Syst. 2017;11:82–94. Available from: http://www.jamris.org/images/ISSUES/ISSUE-2017-02/82_94%20Arent.pdf.
Kurnicki A, Stańczyk B. Manipulator control system for remote USG examination. J Autom Mob Robot Intell Syst. 2019;13:48–59. https://doi.org/10.14313/JAMRIS/2-2019/18.
•• Giuliani M, Szczęśniak-Stańczyk D, Mirnig N, Stollnberger G, Szyszko M, Stańczyk B, et al. User-centred design and evaluation of a tele-operated echocardiography robot. Health Technol (Berl). 2020;10:649–65. https://doi.org/10.1007/s12553-019-00399-0Describes the complete design process and systematic evaluation of a teleoperated system for remote ultrasound exams.
Arbeille P, Zuj K, Saccomandi A, Ruiz J, Andre E, de la Porte C, et al. Teleoperated echograph and probe transducer for remote ultrasound investigation on isolated patients (study of 100 cases). Telemed J E Health. 2016;22:599–607. https://doi.org/10.1089/tmj.2015.0186.
• Arbeille P, Chaput D, Zuj K, Depriester A, Maillet A, Belbis O, et al. Remote echography between a ground control center and the International Space Station using a tele-operated echograph with motorized probe. Ultrasound Med Biol. 2018;44:2406–12. https://doi.org/10.1016/j.ultrasmedbio.2018.06.012Describes the first teleoperated ultrasound exams conducted on a space station from ground control on earth.
Guan X, Wu H, Hou X, Teng Q, Wei S, Jiang T, et al. Study of a 6DOF robot assisted ultrasound scanning system and its simulated control handle. 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). IEEE; 2017. p. 469–474. https://doi.org/10.1109/ICCIS.2017.8274821.
Monfaredi R, Wilson E, Azizi Koutenaei B, Labrecque B, Leroy K, Goldie J, et al. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system. Minim Invasive Ther Allied Technol. 2015;24:54–62. https://doi.org/10.3109/13645706.2014.992908.
Mathiassen K, Fjellin JE, Glette K, Hol PK, Elle OJ. An ultrasound robotic system using the commercial robot UR5. Front Robot AI. 2016;3:1. https://doi.org/10.3389/frobt.2016.00001.
Geng C, Xie Q, Chen L, Li A, Qin B. Study and analysis of a remote robot-assisted ultrasound imaging system. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE; 2020. p. 389–393. https://doi.org/10.1109/ITNEC48623.2020.9084796.
Santos L, Cortesão R. A dynamically consistent hierarchical control architecture for robotic-assisted tele-echography with motion and contact dynamics driven by a 3D time-of-flight camera and a force sensor. 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 2931–937. https://doi.org/10.1109/ICRA.2015.7139600.
Santos L, Cortesão R. Computed-torque control for robotic-assisted tele-echography based on perceived stiffness estimation. IEEE Trans Automat Sci Eng. 2018;15:1337–54. https://doi.org/10.1109/TASE.2018.2790900.
Huang Q, Lan J. Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging. Biomed Signal Process Control. 2019;54:101606. https://doi.org/10.1016/j.bspc.2019.101606.
Boman K, Olofsson M, Berggren P, Sengupta PP, Narula J. Robot-assisted remote echocardiographic examination and teleconsultation: a randomized comparison of time to diagnosis with standard of care referral approach. JACC Cardiovasc Imaging. 2014;7:799–803. https://doi.org/10.1016/j.jcmg.2014.05.006.
Janvier M-A, Merouche S, Allard L, Soulez G, Cloutier G. A 3-D ultrasound imaging robotic system to detect and quantify lower limb arterial stenoses: in vivo feasibility. Ultrasound Med Biol. 2014;40:232–43. https://doi.org/10.1016/j.ultrasmedbio.2013.08.010.
Jiang Z, Grimm M, Zhou M, Esteban J, Simson W, Zahnd G, et al. Automatic normal positioning of robotic ultrasound probe based only on confidence map optimization and force measurement. IEEE Robot Autom Lett. 2020;5:1342–9. https://doi.org/10.1109/LRA.2020.2967682.
• Virga S, Göbl R, Baust M, Navab N, Hennersperger C. Use the force: deformation correction in robotic 3D ultrasound. Int J Comput Assist Radiol Surg. 2018;13:619–27. https://doi.org/10.1007/s11548-018-1716-8Describes a method to estimate and correct the induced deformation based solely on the tracked ultrasound images and information about the applied force.
Zhang HK, Finocchi R, Apkarian K, Boctor EM. Co-robotic synthetic tracked aperture ultrasound imaging with cross-correlation based dynamic error compensation and virtual fixture control. 2016 IEEE International Ultrasonics Symposium (IUS). IEEE; 2016. p. 1–4. https://doi.org/10.1109/ULTSYM.2016.7728522.
Li D, Cheng Z, Chen G, Liu F, Wu W, Yu J, et al. A multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors: a preclinical study. Int J Hyperth. 2018;34:1194–201. https://doi.org/10.1080/02656736.2018.1456680.
• Chen AI, Balter ML, Maguire TJ, Yarmush ML. 3D near infrared and ultrasound imaging of peripheral blood vessels for real-time localization and needle guidance. Med Image Comput Comput Assist Interv. 2016;9902:388–96. https://doi.org/10.1007/978-3-319-46726-9_45Describes a portable device to detect peripheral blood vessels for cannula insertion combining near infrared stereo vision, ultrasound and real-time image analysis.
Chatelain P, Krupa A, Navab N. 3D ultrasound-guided robotic steering of a flexible needle via visual servoing. 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2015. p. 2250–2255. https://doi.org/10.1109/ICRA.2015.7139497.
• Esteban J, Simson W, Requena Witzig S, Rienmüller A, Virga S, Frisch B, et al. Robotic ultrasound-guided facet joint insertion. Int J Comput Assist Radiol Surg. 2018;13:895–904. https://doi.org/10.1007/s11548-018-1759-xDescribes the first clinical trial using an ultrasound-based robotic guiding system to perform facet joint insertions.
Torres PMB, Gonçalves PJS, Martins JMM. Robotic motion compensation for bone movement, using ultrasound images. Ind Robot. 2015;42:466–74. https://doi.org/10.1108/IR-12-2014-0435.
Merouche S, Allard L, Montagnon E, Soulez G, Bigras P, Cloutier G. A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of b-mode images. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63:35–46. https://doi.org/10.1109/TUFFC.2015.2499084.
Huang Q, Lan J, Li X. Robotic arm based automatic ultrasound scanning for three-dimensional imaging. IEEE Trans Ind Inf. 2019;15:1173–82. https://doi.org/10.1109/TII.2018.2871864.
Hennersperger C, Fuerst B, Virga S, Zettinig O, Frisch B, Neff T, et al. Towards MRI-based autonomous robotic US acquisitions: a first feasibility study. IEEE Trans Med Imaging. 2017;36:538–48. https://doi.org/10.1109/TMI.2016.2620723.
• Virga S, Zettinig O, Esposito M, Pfister K, Frisch B, Neff T, et al. Automatic force-compliant robotic ultrasound screening of abdominal aortic aneurysms. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2016. p. 508–513. https://doi.org/10.1109/IROS.2016.7759101Describes an approach that does not rely on preinterventional images for trajectory planning as the system uses an MRI atlas including a generic trajectory.
Graumann C, Fuerst B, Hennersperger C, Bork F, Navab N. Robotic ultrasound trajectory planning for volume of interest coverage. 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2016. p. 736–741. https://doi.org/10.1109/ICRA.2016.7487201.
Kojcev R, Khakzar A, Fuerst B, Zettinig O, Fahkry C, DeJong R, et al. On the reproducibility of expert-operated and robotic ultrasound acquisitions. Int J Comput Assist Radiol Surg. 2017;12:1003–11. https://doi.org/10.1007/s11548-017-1561-1.
• von Haxthausen F, Hagenah J, Kaschwich M, Kleemann M, García-Vázquez V, Ernst F. Robotized ultrasound imaging of the peripheral arteries - a phantom study. Curr Dir Biomed Eng. 2020;6:20200033. https://doi.org/10.1515/cdbme-2020-0033Describes the first system that is based on CNNs to control the robot movement for scanning peripheral arteries.
Nadeau C, Krupa A, Petr J, Barillot C. Moments-based ultrasound visual servoing: from a mono- to multiplane approach. IEEE Trans Robot. 2016;32:1558–64. https://doi.org/10.1109/TRO.2016.2604482.
Chatelain P, Krupa A, Navab N. Confidence-driven control of an ultrasound probe: target-specific acoustic window optimization. 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2016. p. 3441–3446. https://doi.org/10.1109/ICRA.2016.7487522.
• Chatelain P, Krupa A, Navab N. Confidence-driven control of an ultrasound probe. IEEE Trans Robot. 2017;33:1410–24. https://doi.org/10.1109/TRO.2017.2723618Describes methods for target tracking and image quality optimization for ultrasound volumes.
• Langsch F, Virga S, Esteban J, Göbl R, Navab N. Robotic ultrasound for catheter navigation in endovascular procedures. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2019. p. 5404–5410. https://doi.org/10.1109/IROS40897.2019.8967652Describes a study performing autonomous catheter and target tracking in vivo and in a phantom for EVAR.
Kojcev R, Fuerst B, Zettinig O, Fotouhi J, Lee SC, Frisch B, et al. Dual-robot ultrasound-guided needle placement: closing the planning-imaging-action loop. Int J Comput Assist Radiol Surg. 2016;11:1173–81. https://doi.org/10.1007/s11548-016-1408-1.
Zettinig O, Fuerst B, Kojcev R, Esposito M, Salehi M, Wein W, et al. Toward real-time 3D ultrasound registration-based visual servoing for interventional navigation. 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2016. p. 945–950. https://doi.org/10.1109/ICRA.2016.7487226.
Chanel L-A, Nageotte F, Vappou J, Luo J, Cuvillon L, de Mathelin M. Robotized High Intensity Focused Ultrasound (HIFU) system for treatment of mobile organs using motion tracking by ultrasound imaging: an in vitro study. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 2571–2575. https://doi.org/10.1109/EMBC.2015.7318917.
An CY, Syu JH, Tseng CS, Chang C-J. An ultrasound imaging-guided robotic HIFU ablation experimental system and accuracy evaluations. Appl Bionics Biomech. 2017;2017:5868695. https://doi.org/10.1155/2017/5868695.
Seo J, Koizumi N, Mitsuishi M, Sugita N. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound. Int J Med Robot. 2017;13:e1793. https://doi.org/10.1002/rcs.1793.
De Luca V, Harris E, Lediju Bell MA, Tanner C. Challenge on Liver Ultrasound Tracking CLUST 2015 [Internet]. Available from: https://clust.ethz.ch/.
• De Luca V, Banerjee J, Hallack A, Kondo S, Makhinya M, Nouri D, et al. Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins. Med Phys. 2018;45:4986–5003. https://doi.org/10.1002/mp.13152Describes and evaluates different tracking algorithms for 2D and 3D ultrasound.
Şen HT, Lediju Bell MA, Zhang Y, Ding K, Boctor E, Wong J, et al. System integration and in vivo testing of a robot for ultrasound guidance and monitoring during radiotherapy. IEEE Trans Biomed Eng. 2017;64:1608–18. https://doi.org/10.1109/TBME.2016.2612229.
Kuhlemann I, Jauer P, Schweikard A, Ernst F. Patient localization for robotized ultrasound-guided radiation therapy. Imaging and Computer Assistance in Radiation Therapy, ICART 2015, 18th International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI’15. 2015. p. 105–112. Available from: https://hal.archives-ouvertes.fr/hal-01264358/document.
Schlüter M, Fürweger C, Schlaefer A. Optimizing robot motion for robotic ultrasound-guided radiation therapy. Phys Med Biol. 2019;64:195012. https://doi.org/10.1088/1361-6560/ab3bfb.
•• Schlüter M, Gerlach S, Fürweger C, Schlaefer A. Analysis and optimization of the robot setup for robotic-ultrasound-guided radiation therapy. Int J Comput Assist Radiol Surg. 2019;14:1379–87. https://doi.org/10.1007/s11548-019-02009-wDescribes optimization strategies for automatic positioning of a seven DOF robot in a radiotherapy scenario.
Seitz PK, Baumann B, Johnen W, Lissek C, Seidel J, Bendl R. Development of a robot-assisted ultrasound-guided radiation therapy (USgRT). Int J Comput Assist Radiol Surg. 2020;15:491–501. https://doi.org/10.1007/s11548-019-02104-y.
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.
Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, et al. Deep learning in medical ultrasound analysis: a review. Engineering. 2019;5:261–75. https://doi.org/10.1016/j.eng.2018.11.020.
Tuysuzoglu A, Tan J, Eissa K, Kiraly AP, Diallo M, Kamen A. Deep adversarial context-aware landmark detection for ultrasound imaging. In: Frangi AF, Schnabel JA, Davatzikos C, Alberola-López C, Fichtinger G, editors. Medical image computing and computer assisted intervention -- MICCAI 2018. Cham: Springer International Publishing; 2018. p. 151–158. https://doi.org/10.1007/978-3-030-00937-3_18.
Li H, Weng J, Shi Y, Gu W, Mao Y, Wang Y, et al. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci Rep. 2018;8:6600. https://doi.org/10.1038/s41598-018-25005-7.
Diamant A, Chatterjee A, Vallières M, Shenouda G, Seuntjens J. Deep learning in head & neck cancer outcome prediction. Sci Rep. 2019;9:2764. https://doi.org/10.1038/s41598-019-39206-1.
Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529–33. https://doi.org/10.1038/nature14236.
Chen YF, Everett M, Liu M, How JP. Socially aware motion planning with deep reinforcement learning. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2017. p. 1343–1350. https://doi.org/10.1109/IROS.2017.8202312.
Yuan W, Stork JA, Kragic D, Wang MY, Hang K. Rearrangement with nonprehensile manipulation using deep reinforcement learning. 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2018. p. 270–277. https://doi.org/10.1109/ICRA.2018.8462863.
Wang Y, He H, Sun C. Learning to navigate through complex dynamic environment with modular deep reinforcement learning. IEEE Trans Games. 2018;10:400–12. https://doi.org/10.1109/TG.2018.2849942.
Alansary A, Oktay O, Li Y, Folgoc LL, Hou B, Vaillant G, et al. Evaluating reinforcement learning agents for anatomical landmark detection. Med Image Anal. 2019;53:156–64. https://doi.org/10.1016/j.media.2019.02.007.
Bhattad S, Escoto A, Malthaner R, Patel R. Robot-assisted, ultrasound-guided minimally invasive navigation tool for brachytherapy and ablation therapy: initial assessment. In: Webster III RJ, Yaniv ZR, editors. Medical Imaging 2015: Image-guided procedures, robotic interventions, and Modeling. SPIE; 2015. p. 94150N. https://doi.org/10.1117/12.2082472.
Samei G, Tsang K, Kesch C, Lobo J, Hor S, Mohareri O, et al. A partial augmented reality system with live ultrasound and registered preoperative MRI for guiding robot-assisted radical prostatectomy. Med Image Anal. 2020;60:101588. https://doi.org/10.1016/j.media.2019.101588.
Lim S, Jun C, Chang D, Petrisor D, Han M, Stoianovici D. Robotic transrectal ultrasound guided prostate biopsy. IEEE Trans Biomed Eng. 2019;66:2527–37. https://doi.org/10.1109/TBME.2019.2891240.
Pîslă D, Gherman B, Gîrbacia F, Vaida C, Butnariu S, Gîrbacia T, et al. Optimal planning of needle insertion for robotic-assisted prostate biopsy. In: Borangiu T, editor. Advances in robot design and intelligent control. Cham: Springer International Publishing; 2016. p. 339–346. https://doi.org/10.1007/978-3-319-21290-6_34.
Schlosser J, Gong RH, Bruder R, Schweikard A, Jang S, Henrie J, et al. Robotic intrafractional US guidance for liver SABR: system design, beam avoidance, and clinical imaging. Med Phys. 2016;43:5951–63. https://doi.org/10.1118/1.4964454.
Hughes-Hallett A, Pratt P, Mayer E, Di Marco A, Yang G-Z, Vale J, et al. Intraoperative ultrasound overlay in robot-assisted partial nephrectomy: first clinical experience. Eur Urol. 2014;65:671–2. https://doi.org/10.1016/j.eururo.2013.11.001.
von Haxthausen F, Böttger S, Kleemann M, Ernst F, Schweikard A. Robotics from the bench: research for ultrasound automation with augmented reality visualization. Proceedings on Minimally Invasive Surgery. 2019. 219. Available from: https://doi.org/10.18416/MIC.2019.
Edgcumbe P, Singla R, Pratt P, Schneider C, Nguan C, Rohling R. Follow the light: projector-based augmented reality intracorporeal system for laparoscopic surgery. J Med Imaging (Bellingham). 2018;5:021216. https://doi.org/10.1117/1.JMI.5.2.021216.
Edgcumbe P, Singla R, Pratt P, Schneider C, Nguan C, Rohling R. Augmented reality imaging for robot-assisted partial nephrectomy surgery. In: Zheng G, Liao H, Jannin P, Cattin P, Lee S-L, editors. Medical imaging and augmented reality. Cham: Springer International Publishing; 2016. p. 139–150. https://doi.org/10.1007/978-3-319-43775-0_13.
Shen J, Zemiti N, Taoum C, Aiche G, Dillenseger J-L, Rouanet P, et al. Transrectal ultrasound image-based real-time augmented reality guidance in robot-assisted laparoscopic rectal surgery: a proof-of-concept study. Int J Comput Assist Radiol Surg. 2020;15:531–43. https://doi.org/10.1007/s11548-019-02100-2.