Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective

Entomologia Experimentalis et Applicata - Tập 167 Số 1 - Trang 37-58 - 2019
Emmanuel Desouhant1, Elisa Gomes1, Nathalie Mondy2, Isabelle Amat1
1UMR 5558 Laboratoire de Biométrie et Biologie Evolutive CNRS Université Claude Bernard Lyon 1 F‐69622 Villeurbanne France
2UMR5023 LEHNA ENTPE CNRS Université Claude Bernard Lyon 1 F‐69622 Villeurbanne France

Tóm tắt

AbstractThe alternation of light and dark periods on a daily or seasonal time scale is of utmost importance for the synchronization of physiological and behavioral processes in the environment. For the last 2 decades, artificial light at night (ALAN) has strongly increased worldwide, disrupting the photoperiod and its related physiological processes, and impacting the survival and reproduction of wild animals. ALAN is now considered as a major concern for biodiversity and human health. Here, we present why insects are relevant biological models to investigate the impact of ALAN. First the phenotypic responses to ALAN and their underpinning mechanisms are reviewed. The consequences for population dynamics, and the community composition and functioning are described in the second part. Because ALAN provides new and widespread selective pressure, we inventory evolutionary changes in response to this anthropogenic change. Finally, we identify promising future avenues, focusing on the necessity of understanding evolutionary processes that could help stakeholders consider darkness as a resource to preserve biodiversity as well as numerous ecosystem services in which insects are involved.

Từ khóa


Tài liệu tham khảo

10.2741/2116

10.1098/rsbl.2016.0111

10.1111/j.1570-7458.2008.00817.x

10.1016/j.jqsrt.2016.01.032

10.1016/j.cois.2018.02.003

10.1016/j.cbpc.2004.03.017

10.1098/rstb.2014.0131

10.1126/science.1127863

10.1016/j.anbehav.2017.05.020

10.1146/annurev.ento.46.1.471

10.1111/jpi.12075

10.1017/S1464793103006158

10.1093/acprof:osobl/9780199602568.001.0001

10.1016/j.tree.2010.12.008

10.3390/ijms14048638

10.1007/s10905-016-9569-x

10.1016/j.biocon.2006.04.020

10.1111/j.1600-079X.1999.tb00610.x

10.1016/j.cub.2012.12.034

10.1111/gcb.13927

10.1098/rsbl.2012.0216

10.1111/gcb.13615

10.1111/1365-2656.12540

10.1002/jez.2188

10.7717/peerj.1075

10.1002/jez.b.22810

10.1098/rsos.171166

10.1126/sciadv.1600377

10.1016/j.envpol.2018.01.039

10.1007/s00442-016-3723-1

Frank KD, 2009, The Daschner guide to in‐hospital antibiotic therapy, Peckhamia, 78, 1

10.1016/j.gde.2017.03.004

10.1152/physrev.1997.77.4.963

10.1126/science.aau8226

10.1139/er-2014-0005

10.1111/brv.12036

10.1098/rstb.2014.0133

10.1146/annurev-ecolsys-110316-022745

10.1002/ece3.1090

10.1111/icad.12116

10.1111/ens.12000

10.1007/s10841-015-9777-2

10.1111/aab.12440

10.1111/eea.12196

10.1098/rstb.2014.0121

10.1371/journal.pone.0185809

10.1034/j.1600-079X.2003.00040.x

10.1007/s002650050590

10.1016/j.cois.2017.09.010

10.1186/s12864-015-2336-0

10.1002/fee.1828

10.1111/j.1600-079X.1995.tb00156.x

10.1016/S0047-6374(98)00105-5

Izutsu M, 2016, Dynamics of dark‐fly genome under environmental selections, G3: Genes, Genomes, Genetics, 6, 365, 10.1534/g3.115.023549

10.1038/s41598-017-06998-z

10.1016/j.jqsrt.2018.01.032

Jones MDR, 1972, The circadian rhythm of flight activity of the mosquito Anopheles gambiae: the light‐response rhythm, Journal of Experimental Biology, 57, 337, 10.1242/jeb.57.2.337

10.1098/rstb.2014.0122

10.1038/nature23288

10.1098/rstb.2016.0248

10.1093/astrogeo/atx025

10.1371/journal.pone.0017307

10.1016/j.biocon.2011.06.004

10.1098/rsbl.2016.0874

10.1111/gcb.14008

10.1890/1540-9295(2004)002[0191:ELP]2.0.CO;2

10.1098/rstb.2014.0125

10.1016/j.scitotenv.2017.07.056

10.1111/een.12174

10.1111/gcb.13371

10.3389/fenvs.2017.00061

10.1111/oik.04696

10.1016/j.jinsphys.2017.04.009

10.1016/j.rbe.2016.11.004

10.1111/icad.12068

10.1016/j.anbehav.2010.03.003

10.1890/12-2007.1

10.1098/rspb.2017.1195

10.1111/j.1461-0248.2008.01258.x

10.1242/jeb.071142

10.1016/bs.abr.2016.09.008

10.1002/ece3.4557

10.1371/journal.pone.0191576

10.1371/journal.pone.0036207

Pawson SM, 2013, LED lighting increases the ecological impact of light pollution irrespective of color temperature, Ecological Applications, 23, 515

10.1890/14-0468.1

10.1111/fwb.12270

Reiter RJ, 2013, The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives, Mini Reviews in Medicinal Chemistry, 13, 373

10.1111/eea.12257

10.1034/j.1600-079X.2001.280301.x

10.1002/jez.2173

10.1016/j.physbeh.2017.08.029

10.1002/jez.2157

10.1038/srep15232

10.1016/j.cub.2018.05.078

10.1093/jhered/esy001

10.1371/journal.pone.0186808

Shi L, 2017, Adult tea green leafhoppers, Empoasca onukii (Matsuda), change behaviors under varying light conditions, PLoS ONE, 12, 1

10.1111/j.1752-4571.2010.00166.x

10.3109/07420528.2015.1072002

10.1098/rsbl.2013.0376

10.1016/S0092-8674(00)81638-4

10.1016/j.mambio.2015.02.004

10.1146/annurev-ento-020117-043348

10.1080/09291016.2017.1325564

10.1016/j.tree.2015.06.009

10.3109/07420520903529765

10.1111/aen.12264

10.1007/BF01923945

10.1002/ece3.2527

10.1111/1365-2664.13004

10.1016/j.gene.2018.05.070

Warren AD, 1990, predation of five species of noctuidae at ultraviolet light by the Western yellowjacket (Hymenoptera: Vespidae), Journal of Lepidopterists’ Society, 44, 32

Wilson JF, 2018, A role for artificial night‐time lighting in long‐term changes in populations of 100 widespread macro‐moths in UK and Ireland: a citizen‐science study, Annals of Applied Biology, 173, 180

10.1111/j.1439-0418.2007.01229.x