Mechanisms of salinity tolerance and their possible application in the breeding of vegetables

Mostafakamal Shams1, Ali Khadivi2
1Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland
2Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak, Iran

Tóm tắt

AbstractBackgroundIn dry and semi-arid areas, salinity is the most serious hazard to agriculture, which can affect plant growth and development adversely. Over-accumulation of Na+in plant organs can cause an osmotic effect and an imbalance in nutrient uptake. However, its harmful impact can vary depending on genotype, period of exposure to stress, plant development stage, and concentration and content of salt. To overcome the unfavorable effect of salinity, plants have developed two kinds of tolerance strategies based on either minimizing the entrance of salts by the roots or administering their concentration and diffusion.ResultsHaving sufficient knowledge of Na+accumulation mechanisms and an understanding of the function of genes involved in transport activity will present a new option to enhance the salinity tolerance of vegetables related to food security in arid regions. Considerable improvements in tolerance mechanisms can be employed for breeding vegetables with boosted yield performance under salt stress. A conventional breeding method demands exhaustive research work in crops, while new techniques of molecular breeding, such as cutting-edge molecular tools and CRISPR technology are now available in economically important vegetables and give a fair chance for the development of genetically modified organisms.ConclusionsTherefore, this review highlights the molecular mechanisms of salinity tolerance, various molecular methods of breeding, and many sources of genetic variation for inducing tolerance to salinity stress.

Từ khóa


Tài liệu tham khảo

Gupta B, Huang B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics 2014: 701596

Machado RMA, Serralheiro RP. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 2017;3(2):30.

Shams M, Yildirim E. Variations in response of CaPAO and CaATG8c genes, hormone, photosynthesis and antioxidative system in pepper genotypes under salinity stress. Sci Hort. 2021;282:110041.

Ansari HH, Siddiqui A, Wajid D, Tabassum S, Umar M, Siddiqui ZS. Profiling of energy compartmentalization in photosystem II (PSII), light harvesting complexes and specific energy fluxes of primed maize cultivar (P1429) under salt stress environment. Plant Physiol Biochem. 2022;170:296–306.

Dhokne K, Pandey J, Yadav RM, Ramachandran P, Rath JR, Subramanyam R. Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress. Plant Physiol Biochem. 2022;177:46–60. https://doi.org/10.1016/j.plaphy.2022.02.004

Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. Planta. 2022;255(3):68. https://doi.org/10.1007/s00425-022-03845-y

Fang S, Hou X, Liang X. Response mechanisms of plants under saline-alkali stress. Front Plant Sci. 2021;12:1049.

Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, Kul R. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hort Environ Biotech. 2016b;57(3):225–31. https://doi.org/10.1007/s13580-016-0021-0

Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: a research perspective. Plant Physiol Biochem. 2021;158:53–64. https://doi.org/10.1016/j.plaphy.2020.11.044

Giordano M, Petropoulos SA, Cirillo C, Rouphael Y. Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae. 2021;7(5):107.

Wei Z, Fang L, Li X, Liu J, Liu F. Endogenous ABA level modulates the effects of CO2 elevation and soil water deficit on growth, water and nitrogen use efficiencies in barley and tomato plants. Agric Water Manage. 2021;249:106808.

Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, Kul R. Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hortic Environ Biotechnol. 2016a;57(3):225–31. https://doi.org/10.1007/s13580-016-0021-0

Dong X, Sun L, Guo J, Liu L, Han G, Wang B. Exogenous boron alleviates growth inhibition by NaCl stress by reducing cl – uptake in sugar beet (Beta vulgaris). Plant Soil. 2021;464(1):423–39.

Azizi F, Farsaraei S, Moghaddam M. Application of exogenous ascorbic acid modifies growth and pigment content of Calendula officinalis L. flower heads of plants exposed to NaCl stress. J Soil Sci Plant Nutr. 2021;21(4):2803–14.

Dadasoglu E, Ekinci M, Kul R, Shams M, Turan M, Yildirim E. Nitric oxide enhances salt tolerance through regulating antioxidant enzyme activity and nutrient uptake in pea. Legume Research-An International Journal. 2021;44(1):41–5.

Rubio F, Nieves-Cordones M, Horie T, Shabala S. Doing ‘business as usual’comes with a cost: evaluating energy cost of maintaining plant intracellular K + homeostasis under saline conditions. New Phytol. 2020;225(3):1097–104.

Shams M, Yildirim E, Arslan E, Agar G. Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H2O2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiol Plant. 2020;42(4):59. https://doi.org/10.1007/s11738-020-03053-9

Khalil R, Elsayed N, Khan TA, Yusuf M. (2022) Potassium: A Potent Modulator of Plant Responses Under Changing Environment. Role of Potassium in Abiotic Stress. Springer, pp. 221–247

Nieves-Cordones M, Azeem F, Long Y, Boeglin M, Duby G, Mouline K, Hosy E, Vavasseur A, Chérel I, Simonneau T. Non-autonomous stomatal control by pavement cell turgor via the K + channel subunit AtKC1. Plant Cell. 2022;34(5):2019–37.

Yang X, Han Y, Hao J, Qin X, Liu C, Fan S. Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Sci Hort. 2022;291:110570.

Breś W, Kleiber T, Markiewicz B, Mieloszyk E, Mieloch M. The effect of NaCl stress on the response of lettuce (Lactuca sativa L). Agronomy. 2022;12(2):244.

Semida WM, El-Mageed A, Taia A, Abdelkhalik A, Hemida KA, Abdurrahman HA, Howladar SM, Leilah AA, Rady MO. Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy. 2021;11(5):855.

Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem. 2021;161:122–30.

Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, Yildirim E. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biology Plants. 2019;25(5):1149–61. https://doi.org/10.1007/s12298-019-00692-2

Ranjan A, Sinha R, Sharma TR, Pattanayak A, Singh AK. Alleviating aluminum toxicity in plants: implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiol Plant. 2021;173(4):1765–84.

Sahin U, Ekinci M, Ors S, Turan M, Yildiz S, Yildirim E. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hort. 2018;240:196–204.

Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R. Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Hort. 2020;272:109537.

Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun. 2018;495(1):286–91. https://doi.org/10.1016/j.bbrc.2017.11.043

Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plant. 2020;168(2):256–77.

Smith LP, Bitler BG, Richer JK, Christenson JL. Tryptophan catabolism in epithelial ovarian carcinoma. Trends in cancer research. 2019;14:1.

Kulma A, Szopa J. Catecholamines are active compounds in plants. Plant Sci. 2007;172(3):433–40.

Campos MD, Félix MdR, Patanita M, Materatski P, Varanda C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. Hortic Res. 2021;8:171.

Aslam A, Zhao S, Lu X, He N, Zhu H, Malik AU, Azam M, Liu W. High-throughput LC-ESI-MS/MS Metabolomics Approach reveals regulation of Metabolites related to diverse functions in mature fruit of grafted Watermelon. Biomolecules. 2021;11(5):628.

Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F. Next-generation breeding strategies for climate-ready crops. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.620420

Ranc N, Muños S, Xu J, Le Paslier M-C, Chauveau A, Bounon R, Rolland S, Bouchet J-P, Brunel D, Causse M. (2012) Genome-Wide Association Mapping in Tomato (Solanum lycopersicum) Is Possible Using Genome Admixture of Solanum lycopersicum var. cerasiforme. G3 Genes|Genomes|Genetics 2 (8):853–864. https://doi.org/10.1534/g3.112.002667

Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM. Development of a large SNP genotyping array and generation of high-density genetic maps in Tomato. PLoS ONE. 2012;7(7):e40563. https://doi.org/10.1371/journal.pone.0040563

Solis J, Baisakh N, Brandt SR, Villordon A, La Bonte D. Transcriptome profiling of beach morning glory (Ipomoea imperati) under salinity and its comparative analysis with sweetpotato. PLoS ONE. 2016;11(2):e0147398.

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 2011;43(10):1035–9.

Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S. Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics. 2013;14(1):1–7.

Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A. De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS ONE. 2015;10(5):e0126783.

Liu N, Yang J, Guo S, Xu Y, Zhang M. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS ONE. 2013;8(2):e57359.

Ram C, Danish S, Kesawat MS, Panwar BS, Verma M, Arya L, Yadav S, Sharma V. Genome-wide comprehensive characterization and expression analysis of TLP gene family revealed its responses to hormonal and abiotic stresses in watermelon (Citrullus lanatus). Gene. 2022;844:146818. https://doi.org/10.1016/j.gene.2022.146818

Alexis AC. Determination of saline tolerance under in vitro conditions of lettuce (Lactuca sativa L. var. crespa) induced polyploidy. Agricultural Res Technol. 2019;23(3):277–9.

Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002;130(4):2129–41.

Yagci S, Yildirim E, Yildirim N, Shams M, Agar G. Nitric oxide alleviates the effects of copper-induced DNA methylation, genomic instability, LTR retrotransposon polymorphism and enzyme activity in lettuce. Plant Physiol Rep. 2019;24(3):289–95.

Zhang H, Ma F, Wang X, Liu S, Saeed UH, Hou X, Zhang Y, Luo D, Meng Y, Zhang W. Molecular and functional characterization of CaNAC035, an NAC transcription factor from pepper (Capsicum annuum L). Front Plant Sci. 2020;11:14.

Mann A, Kumar N, Lata C, Kumar A, Kumar A, Meena B. Functional annotation of differentially expressed genes under salt stress in Dichanthium annulatum. Plant Physiol Rep. 2019;24(1):104–11.

Wei S, Gao L, Zhang Y, Zhang F, Yang X, Huang D. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress. Plant Cell Rep. 2016;35(9):1827–39. https://doi.org/10.1007/s00299-016-1997-8

Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules. 2020b;10(4):506.

Baghour M, Gálvez FJ, Sánchez ME, Aranda MN, Venema K, Rodríguez-Rosales MP. Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. Plant Physiol Biochem. 2019;135:77–86. https://doi.org/10.1016/j.plaphy.2018.11.028

Zaynab M, Hussain A, Sharif Y, Fatima M, Sajid M, Rehman N, Yang X, Khan KA, Ghramh HA, Li S. Mitogen-activated protein kinase expression profiling revealed its role in regulating stress responses in potato (Solanum tuberosum). Plants. 2021;10(7):1371.

Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017;59(2):86–101.

Wang W-R, Liang J-H, Wang G-F, Sun M-X, Peng F-T, Xiao Y-S. Overexpression of PpSnRK1α in tomato enhanced salt tolerance by regulating ABA signaling pathway and reactive oxygen metabolism. BMC Plant Biol. 2020;20(1):1–15.

He Y, Yao Y, Li L, Li Y, Gao J, Fan M. A heat-shock 20 protein isolated from watermelon (ClHSP22.8) negatively regulates the response of Arabidopsis to salt stress via multiple signaling pathways. PeerJ. 2021;9:e10524. https://doi.org/10.7717/peerj.10524

Pinar H, Bulbul C, Simsek D, Shams M, Mutlu N, Ercisli S. Development of molecular markers lınked to QTL/genes controllıng Zn effıcıency. Mol Biol Rep. 2021. https://doi.org/10.1007/s11033-021-06736-9

Amombo E, Ashilenje D, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, El Gharous M, Nilahyane A. Exploring the correlation between salt tolerance and yield: research advances and perspectives for salt-tolerant forage sorghum selection and genetic improvement. Planta. 2022;255(3):1–16.

Das A, Singh S, Islam Z, Munshi A, Behera T, Dutta S, Weng Y, Dey S. Current progress in genetic and genomics-aided breeding for stress resistance in cucumber (Cucumis sativus L). Sci Hort. 2022;300:111059.

Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M. Novel plant breeding techniques shake hands with cereals to increase production. Plants. 2022;11:8.

Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P. The more the better? The role of polyploidy in facilitating plant invasions. Ann Botany. 2012;109(1):19–45.

Sattler MC, Carvalho CR, Clarindo WR. The polyploidy and its key role in plant breeding. Planta. 2016;243(2):281–96. https://doi.org/10.1007/s00425-015-2450-x

Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S, Singh N, Prasad K, Kondayya K, Rao PR. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci. 2016;242:278–87.

Tiwari DN. A critical review of submergence tolerance breeding beyond sub 1 gene to mega varieties in the context of climate change. Int J Adv Sci Res Eng. 2018;4:140–8.

Mani B, Kumar B, Krishnamurthy S. Genetic variability and diversity of rice landraces of South Western India based on morphological traits. ORYZA-An Int J Rice. 2014;51(4):261–6.

Khan M, Kamal S, Saeed M, Iqbal J. Identification of quantitative trait loci for Na+, K + and ca + + accumulation traits in rice grown under saline conditions using F2 mapping population. Brazilian J Bot. 2015;38(3):555–65.

Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Datta DR, Anisuzzaman M, Ikbal MF. Advanced breeding strategies and future perspectives of salinity tolerance in rice. Agronomy. 2021;11:8.

Keilwagen J, Lehnert H, Berner T, Budahn H, Nothnagel T, Ulrich D, Dunemann F. (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Frontiers in plant science 8:1930

Ellison SL, Luby CH, Corak KE, Coe KM, Senalik D, Iorizzo M, Goldman IL, Simon PW, Dawson JC. Carotenoid presence is associated with the Or gene in domesticated carrot. Genetics. 2018;210(4):1497–508.

Bolton A, Simon P. (2019) Variation for salinity tolerance during seed germination in diverse carrot (Daucus carota L.) germplasm. HortScience 54 (1):38–44

Villano C, Esposito S, Carucci F, Iorizzo M, Frusciante L, Carputo D, Aversano R. High-throughput genotyping in onion reveals structure of genetic diversity and informative SNPs useful for molecular breeding. Mol Breeding. 2018;39(1):5. https://doi.org/10.1007/s11032-018-0912-0

Razali R, Bougouffa S, Morton MJL, Lightfoot DJ, Alam I, Essack M, Arold ST, Kamau AA, Schmockel SM, Pailles Y, Shahid M, Michell CT, Al-Babili S, Ho YS, Tester M, Bajic VB, Negrao S. The genome sequence of the wild Tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front Plant Sci. 2018;9. https://doi.org/10.3389/fpls.2018.01402

Wan, L., Wang, Z., Tang, M., Hong, D., Sun, Y., Ren, J., ... & Zeng, H. CRISPR-Cas9 gene editing for fruit and vegetable crops: strategies and prospects. Horticulturae, 2021;7(7):193.

Kaur H, Pandey DK, Goutam U, Kumar V. CRISPR/Cas9-mediated genome editing is revolutionizing the improvement of horticultural crops: recent advances and future prospects. Sci Hort. 2021;289:110476.

Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular plant. 2015 Aug 3;8(8):1274-84.

Zhu H, Li C, Gao C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol. 2020a;21(11):661–77.

Ran Y, Liang Z, Gao C. Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci. 2017;60(5):490–505.

Xin T, Tian H, Ma Y, Wang S, Yang L, Li X, Zhang M, Chen C, Wang H, Li H, Xu J, Huang S, Yang X. Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Hortic Res. 2022;9:uhab086. https://doi.org/10.1093/hr/uhab086

Hu B, Li D, Liu X, Qi J, Gao D, Zhao S, Huang S, Sun J, Yang L. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant. 2017;10(12):1575–8.

Bouzroud S, Gasparini K, Hu G, Barbosa MA, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A, Zouine M. Down Regulation and loss of Auxin Response factor 4 function using CRISPR/Cas9 alters Plant Growth, Stomatal function and improves Tomato Tolerance to Salinity and osmotic stress. Genes. 2020;11(3). https://doi.org/10.3390/genes11030272

Kim Y-C, Ahn WS, Cha A, Jie EY, Kim SW, Hwang B-H, Lee S. (2022) Development of glucoraphanin-rich broccoli (Brassica oleracea var. italica) by CRISPR/Cas9-mediated DNA-free Bol MYB 28 editing. Plant Biotechnology Reports:1–10

Giordano A, Santo Domingo M, Quadrana L, Pujol M, Martín-Hernández AM, Garcia-Mas J. CRISPR/Cas9 gene editing uncovers the role of CTR1 and ROS1 in melon fruit ripening and epigenetic regulation. J Exp Bot. 2022;73:4022–33.

Choi SH, Ahn WS, Jie EY, Cho H-S, Kim SW. (2022) Development of late-bolting plants by CRISPR/Cas9-mediated genome editing from mesophyll protoplasts of lettuce. Plant Cell Reports:1–4

Oleszkiewicz T, Klimek-Chodacka M, Kruczek M, Godel-Jędrychowska K, Sala K, Milewska-Hendel A, Zubko M, Kurczyńska E, Qi Y, Baranski R. Inhibition of carotenoid biosynthesis by CRISPR/Cas9 triggers cell wall remodelling in carrot. Int J Mol Sci. 2021;22(12):6516.

Jain M, Khurana JP. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009;276(11):3148–62.

Kashyap SP, Kumari N, Mishra P, Moharana DP, Aamir M. Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: perspectives and challenges. Genet Resour Crop Evol. 2021;68(6):2207–33. https://doi.org/10.1007/s10722-021-01174-9

Jaime-Pérez N, Pineda B, García‐Sogo B, Atares A, Athman A, Byrt CS, Olías R, Asins MJ, Gilliham M, Moreno V. The sodium transporter encoded by the HKT1; 2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant Cell Environ. 2017;40(5):658–71.

Li D, Fu F, Zhang H, Song F. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L). BMC Genomics. 2015;16(1):1–18.

Alshareef NO, Wang JY, Ali S, Al-Babili S, Tester M, Schmöckel SM. Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiol Biochem. 2019;140:113–21.

Yactayo-Chang JP, Acosta-Gamboa LM, Nepal N, Lorence A. (2017) The role of plant high-throughput phenotyping in the characterization of the response of high ascorbate plants to abiotic stresses. Ascorbic acid in plant growth, development and stress tolerance:321–354

Akbudak MA, Filiz E, Çetin D. Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2) gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses. J Plant Physiol. 2022;272:153684.

Du C, Si Y, Wang Z, Guo Y, Li Y, Liu C, Fan H. Overexpression of CsPP2-A1 in cucumber enhanced salt tolerance by participating ABA-JA signaling pathway and antioxidant system. Environ Exp Bot. 2022;204:105095.

Hou K, Wang Y, Tao M-Q, Jahan MS, Shu S, Sun J, Guo S-R. Characterization of the CsPNG1 gene from cucumber and its function in response to salinity stress. Plant Physiol Biochem. 2020;150:140–50.

Zhou Y, Hu L, Jiang L, Liu H, Liu S. Molecular cloning and characterization of an ASR gene from Cucumis sativus. Plant Cell Tissue and Organ Culture (PCTOC). 2017;130:553–65.

Yang X, Li H, Yang Y, Wang Y, Mo Y, Zhang R, Zhang Y, Ma J, Wei C, Zhang X. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus). PLoS ONE. 2018;13(1):e0191308.

Huang Y, Du J, Liu Y, Cao X, Liu Z, Li M. MAPK Gene Family in Lactuca sativa: genome-wide identification, Regulatory Network, and expression patterns in Stem Development and stress responses. Horticulturae. 2022;8(11):1087.

Shah IH, Manzoor MA, Sabir IA, Ashraf M, Haq F, Arif S, Abdullah M, Niu Q, Zhang Y. Genome-wide identification and comparative analysis of MATE gene family in Cucurbitaceae species and their regulatory role in melon (Cucumis melo) under salt stress. Hortic Environ Biotechnol. 2022;63(4):595–612.

Zhao Y-H, Deng Y-J, Wang Y-H, Lou Y-R, He L-F, Liu H, Li T, Yan Z-M, Zhuang J, Xiong A-S. Changes in carotenoid concentration and expression of carotenoid biosynthesis genes in Daucus carota taproots in response to increased salinity. Horticulturae. 2022;8(7):650.

Li M-Y, Xu Z-S, Tian C, Huang Y, Wang F, Xiong A-S. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep. 2016;6(1):23101.

Zhou L, Li J, He Y, Liu Y, Chen H. Functional characterization of SmCBF genes involved in abiotic stress response in eggplant (Solanum melongena). Sci Hort. 2018;233:14–21.

Chen J, Wang S, Wu F, Wei M, Li J, Yang F. Genome–wide identification and functional characterization of auxin response factor (ARF) genes in eggplant. Int J Mol Sci. 2022;23(11):6219.

Chiang C-M, Chen C-C, Chen S-P, Lin K-H, Chen L-R, Su Y-H, Yen H-C. Overexpression of the ascorbate peroxidase gene from eggplant and sponge gourd enhances flood tolerance in transgenic Arabidopsis. J Plant Res. 2017;130:373–86.

Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu Q. A vacuolar Na+/H + antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hort. 2016;201:153–66.

Wang Y, Zhan Y, Wu C, Gong S, Zhu N, Chen S, Li H. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Sci. 2012;191–192:93–9. https://doi.org/10.1016/j.plantsci.2012.05.001

Ma C, Wang Y, Gu D, Nan J, Chen S, Li H. Overexpression of S-adenosyl-L-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci. 2017;18(4):847.

Chaudhry UK, Gökçe ZNÖ, Gökçe AF. Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia. 2021;76(10):3107–21. https://doi.org/10.1007/s11756-021-00827-5