Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?

New Phytologist - Tập 178 Số 4 - Trang 719-739 - 2008
Nate G. McDowell1, William T. Pockman2, Craig D. Allen3, David D. Breshears4, Neil S. Cobb5, Thomas E. Kolb6, J. Plaut2, John S. Sperry7, Adam G. West8,9, David G. Williams10, Enrico A. Yépez11
1Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
3US Geologcial Survey, Jemez Mountains Field Station, 15 Entrance Road, Los Alamos, NM 87544, USA
4School of Natural Resources, Institute for the Study of Planet Earth, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0043, USA
5Merriam-Powell Center for Environmental Research, Peterson Hall, Bldg 22, Rm 330, Box 6077, Northern Arizona University Flagstaff, AZ 86011, USA
6School of Forestry, Northern Arizona University, Flagstaff, AZ 86001-5018, USA
7Department of Biology, University of Utah, 257S 1400E, Salt Lake City, UT 84112, USA
8Botany Department, University of Cape Town, Private Bag, Rondebosch, 7700, South Africa
9Department of Integrative Biology, University of California, Berkeley, CA 94720
10Department of Renewable Resources, University of Wyoming, Laramie, WY 82071 USA
11Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,

Tóm tắt

Summary

Severe droughts have been associated with regional‐scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought‐induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought‐tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought‐induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought‐induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.

Contents Summary 1 I. Introduction 2 II.  Consequences of vegetation mortality 3 III. Global patterns of mortality 3 IV. Hypotheses on mechanisms of drought‐related mortality 4 V. Evidence for hypothesized mechanisms 5 VI. Implications of future climate on hypothesized mortality mechanisms 13 VII. Conclusions 15 Acknowledgements 15 References 15

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-2699.2005.01292.x

10.1111/j.1365-3040.2005.01430.x

10.1007/s10021-007-9057-4

10.1073/pnas.95.25.14839

10.1029/2007EO470008

10.1093/jee/65.1.138

10.5962/bhl.title.68787

10.1006/anbo.2000.1175

10.1007/BF00479846

10.1016/S0048-9697(00)00528-3

10.1046/j.1365-3040.2003.01046.x

Barnes FJ, 1986, PhD dissertation

10.1016/j.foreco.2006.02.038

10.1146/annurev.pp.31.060180.002423

10.1093/ee/5.6.1225

10.1007/s10021-005-0126-2

10.1046/j.0269-8463.2001.00537.x

10.1175/JCLI3741.1

10.1111/j.1365-3040.1991.tb00944.x

10.1016/0022-1694(82)90117-2

10.1016/0304-3800(86)90008-6

10.1016/S0378-1127(00)00351-0

10.1051/forest:2006042

10.1007/978-0-387-34003-6_4

10.1046/j.1466-822X.2002.00274.x

10.1073/pnas.0505734102

10.1890/07-0437.1

BreshearsDD MyersOB MeyerCW BarnesFJ ZouCB AllenCD McDowellNG PockmanWT. (in press).Tree die‐off in response to global‐change‐type drought: mortality insights from a decade of plant water potential measurements.Frontiers in Ecology.

10.1086/314083

10.1046/j.1365-3040.2003.00975.x

10.1046/j.1365-3040.1997.d01-36.x

10.1016/j.ecocom.2005.04.010

10.1017/S0266467403003572

10.1034/j.1600-0706.2001.920119.x

10.1016/0378-1127(87)90098-3

10.1007/BF00328896

10.1038/nature03972

10.1093/treephys/22.1.21

10.1016/B978-0-08-092593-6.50011-6

10.1098/rstb.2003.1426

10.2136/sssaj2004.0396

10.1007/s004420050098

10.1007/PL00008879

10.2307/2963497

10.1126/science.1102586

Cowan IR, 1977, Stomatal function in relation to leaf metabolism and environment, Symposia of the Society for Experimental Biology, 31, 475

10.1007/s00704-004-0049-4

10.1023/A:1005883907800

10.1016/S0048-9697(00)00522-2

10.2307/4003212

10.3732/ajb.89.5.820

10.1093/treephys/16.1-2.263

10.1016/S0378-1127(99)00307-2

10.1023/A:1009719805461

10.1111/j.1365-3040.2007.001686.x

10.1175/JHM532.1

10.1093/treephys/27.10.1389

DoreS KolbTE Montes‐HeluM SullivanBW WinslowWD HartSC KayeJP KochGW HungateBA. (in press).The effect of stand‐replacing fire on ecosystem CO2exchange of ponderosa pine forests in northern Arizona.Global Change Biology.

10.1051/forest:19920605

10.1139/x26-152

10.1093/ee/22.5.948

10.1007/s00468-004-0393-0

10.1023/A:1005532612117

10.1046/j.1365-3040.2000.00625.x

10.1046/j.1365-2664.1999.00460.x

10.1016/j.foreco.2006.10.011

10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2

10.1111/j.1365-3040.2005.01407.x

Franklin JF, 1987, Tree death as an ecological process, Bioscience, 27, 259

10.1111/j.1365-3040.2006.01600.x

10.1139/x04-062

10.1126/science.174.4013.1033

10.1016/j.foreco.2003.11.001

10.1111/j.1523-1739.2006.00424.x

10.1046/j.1365-3040.1998.00273.x

10.3354/cr017217

Gower ST, 1994, Pine ecosystems, 115

10.1016/0378-1127(92)90346-B

10.1603/0022-0493(2006)099[0094:EOSIFP]2.0.CO;2

10.1016/j.foreco.2005.07.014

10.1093/treephys/27.2.269

10.1046/j.1469-8137.2003.00866.x

10.4039/Ent116625-4

10.1007/PL00008875

10.1104/pp.125.2.779

10.1016/j.foreco.2004.05.023

10.1093/treephys/21.6.345

10.1016/S0048-9697(00)00523-4

10.1007/PL00012017

10.1603/0046-225X-30.5.803

10.1086/417659

10.1029/2005JG000101

Hietz P, 2005, Tree temperatures, volatile organic emissions, and primary attraction of bark beetles, Phyton, 45, 341

10.1104/pp.120.1.7

10.1111/j.1365-3040.2005.01454.x

10.1890/1051-0761(2001)011[1046:PRTGDV]2.0.CO;2

10.1080/07060668709501868

10.1111/j.1365-2486.2006.01210.x

10.1093/aob/mch153

10.1093/treephys/26.3.313

IPCC, 2007, Climate change 2007: the physical science basis, 1009

10.1139/x95-124

10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2

10.1016/j.foreco.2005.04.026

10.1046/j.1365-3040.2003.00965.x

10.1093/treephys/19.1.31

10.1023/A:1012539409854

Kelsey RG, 2001, Chemical indicators of stress in trees: their ecological significance and implication for forestry in Eastern Oregon and Washington, Northwest Science, 75, 70

10.1139/x03-007

10.1104/pp.69.4.840

10.1126/science.1114166

10.1093/treephys/18.6.375

10.1139/x93-296

10.1093/treephys/16.8.665

10.1890/0012-9658(1999)080[2373:DIDABS]2.0.CO;2

10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

KurzWA AppsMJ.1999.A 70‐year retrospective analysis of carbon fluxes in the Canadian forest sector.Ecological Applications9:526–547.

10.1093/treephys/9.1-2.59

Larsson S, 1983, Attacks of mountain pine beetle as related to tree vigor of ponderosa pine, Forest Science, 29, 395

10.1046/j.1354-1013.2001.00439.x

10.1104/pp.101.3.1021

10.1051/forest:2003007

10.1046/j.1365-2435.1998.00275.x

10.1111/j.1365-2486.2007.01420.x

10.1111/j.1365-2486.2004.00870.x

10.1093/treephys/18.7.421

10.1093/treephys/18.7.431

10.1093/ee/28.6.924

10.1093/ae/47.3.160

10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2

10.1016/0378-1127(86)90172-6

10.1046/j.1365-2028.2003.00428.x

10.1046/j.1365-3040.2000.00537.x

10.1007/s004420100758

10.1890/02-0538

Manion PD, 1991, Tree disease concepts

10.1086/526462

10.1111/j.1365-2745.2006.01173.x

10.1093/treephys/19.7.435

10.1016/S0304-3800(02)00025-X

10.1016/B978-0-12-078148-5.50019-1

10.1073/pnas.0306738101

10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2

10.1139/X06-233

10.1007/s00442-002-0904-x

10.1007/s00442-005-0104-6

10.1093/treephys/22.11.763

10.1111/j.1365-3040.2007.01714.x

10.1111/j.1469-8137.2004.01127.x

10.1071/WF02054

10.1046/j.1365-3040.2003.00991.x

10.1139/x00-173

10.1016/B978-0-08-092593-6.50006-2

10.2307/2446636

Monteith JL, 1990, Principles of environmental, 291

10.1111/j.1365-3040.1991.tb01521.x

10.1111/j.1365-2745.2005.01042.x

10.2307/1310668

10.1029/2003GL018261

National Research Council, 2007, Understanding multiple environmental stresses

10.1641/0006-3568(2005)055[0749:FRTGPM]2.0.CO;2

10.1890/06-1046.1

10.1029/2005WR004141

10.1086/314173

10.1046/j.1365-3040.2002.00876.x

10.1890/0012-9658(2000)081[3237:TRVIPP]2.0.CO;2

10.1023/A:1026550808557

10.1046/j.1365-3040.1999.00513.x

10.1111/j.1461-9563.2006.00305.x

10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2

10.1139/x05-212

10.1093/treephys/22.2-3.205

10.1093/treephys/23.4.237

10.1126/science.1120479

10.3732/ajb.93.9.1265

10.2307/2656722

10.1038/378715a0

10.1139/x89-068

10.2307/3545270

10.1016/B978-012159270-7/50018-X

10.1007/s00442-004-1503-9

RichPM BreshearsDD WhiteAB.2008.Phenology of mixed woody‐herbaceous ecosystems following extreme events: net and differential responses. Special feature on phenology.Ecology89:342–352.

10.1603/0046-225X-32.2.359

10.1071/PP9930309

10.1016/j.foreco.2004.05.059

RommeWH ClementJ HickeJ KulakowskiD MacDonaldLH SchoennagelTL VeblenTT.2006.Recent forest insect outbreaks and fire risk in colorado forests: a brief synthesis of relevant research.Colorado Forest Research Institute.

Ryan MG, 1994, Dark respiration of pines, Ecological Bulletins, 43, 50

10.1111/j.0030-1299.2004.13184.x

10.1111/j.1365-3040.2007.01682.x

10.1111/j.1365-3040.2004.01211.x

10.1046/j.1365-3040.2000.00553.x

Schoeneweiss DF, 1981, Water Deficits and Plant Growth

10.1073/pnas.0601816103

10.1126/science.1139601

Shaw JD, 2005, Forest inventory and analysis (FIA) annual inventory answers the question: what is happening to pinyon–juniper woodlands?, Journal of Forestry, 103, 80

10.1006/anbo.1998.0590

Sieg CH, 2006, Best predictors for postflre mortality of ponderosa pine trees in the intermountain west, Forest Science, 52, 718

10.1016/S0048-9697(00)00527-1

10.1016/j.agrformet.2007.01.003

10.1007/s00442-004-1635-y

10.1093/treephys/19.7.453

10.1046/j.1365-3040.1998.00287.x

10.1046/j.1365-2435.2002.00628.x

10.1046/j.0016-8025.2001.00799.x

10.1104/pp.83.2.414

10.1093/treephys/17.4.275

10.1086/367580

10.1111/j.1365-3040.1996.tb00241.x

10.1007/BF00052811

10.1111/j.1365-2745.2004.00941.x

10.1890/03-0224

10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2

10.2307/2937153

10.1016/S1360-1385(99)01450-8

10.1098/rstb.1993.0091

10.1104/pp.98.2.540

10.1093/jxb/49.Special_Issue.419

10.1007/s00049-005-0331-7

10.1093/treephys/17.4.241

10.1890/06-0512

10.1023/A:1026146615248

10.1111/j.1365-3040.1993.tb00511.x

10.1104/pp.120.1.11

10.1104/pp.88.3.574

10.1146/annurev.pp.40.060189.000315

10.1046/j.1365-2699.1999.00363.x

10.1111/j.1365-2745.2004.00954.x

10.1139/b96-238

10.1890/0012-9658(1998)079[2624:IOLSCV]2.0.CO;2

10.1111/j.1469-8137.1998.00288.x

10.1603/0046-225X-32.3.652

Wardle JA, 1983, Dieback in New Zealand Nothofagus forests, Pacific Science, 37, 397

Waring GL, 1992, Plant‐insect interactions, 167

10.2307/1310667

10.1093/treephys/18.2.129

10.2307/1940551

10.1093/treephys/19.10.655

10.1007/s00442-007-0777-0

10.1093/treephys/27.12.1711

WestAG HultineKR SperryJS BushSE EhleringerJR.2008.Transpiration and hydraulic strategies in a piñon–juniper woodland.Ecological Applications18:911–927.

10.1126/science.1128834

10.1007/BF00379790

10.1093/treephys/18.8-9.633

10.1016/B978-0-12-424156-5.50008-1

10.1890/0012-9615(2003)073[0223:EOARSW]2.0.CO;2

10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2

10.1071/BT96030

10.1046/j.1523-1739.2000.99298.x

10.1139/x04-118

10.1046/j.1365-2745.2002.00691.x

Yoder BJ, 1994, Evidence of reduced photosynthetic rates in old trees, Forest Science, 40, 513

Zhang J, 1995, Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii., Oecologia, 101, 80