Mechanisms of cerebellar gait ataxia

Susanne M. Morton1, Amy J. Bastian2
1Departments of Physical Therapy & Rehabilitation Science and Anatomy & Neurobiology, University of Maryland School of Medicine, Maryland, USA
2Kennedy Krieger Institute and Departments of Neurology, Neuroscience, and Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine, Maryland, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Babinski J. De l’asynergie cerebelleuse. Rev Neurol (Paris). 1899;7:806–16.

Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.

Hallett M, Massaquoi SG. Physiologic studies of dysmetria in patients with cerebellar deficits. Can J Neurol Sci. 1993;20 (Suppl. 3):S83–92.

Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13: 958–64.

Earhart GM, Bastian AJ. Cerebellar gait ataxia: Selection and coordination of human locomotor forms. J Neurophysiol. 2001;85:759–69.

Jansen J, Brodal A. Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. J Comp Neurol. 1940;73:267–321.

Ito M. The Cerebellum and neural control. New York: Raven Press; 1984.

Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–5.

Kotchabhakdi N, Walberg F. Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res. 1978; 142:142–6.

Clendenin M, Ekerot CF, Oscarsson O, Rosen I. Functional organization of two spinocerebellar paths relayed through the lateral reticular nucleus in the cat. Brain Res. 1974;69(1): 140–3.

Clendenin M, Ekerot CF, Oscarsson O, Rosen I. The lateral reticular nucleus in the cat. I. Mossy fibre distribution in cerebellar cortex. Exp Brain Res. 1974;21(5):473–86.

Grant G. Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol Scand. 1962;56(Suppl)193: 1–45.

Matshushita M, Okado N. Spinocerebellar projections to lobules I and II of the anterior lobe in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol. 1981;197:411–24.

Bosco G, Poppele RE. Proprioception from a spinocerebellar perspective. Physiol Rev. 2001;81(2):539–68.

Lundberg A, Weight F. Functional organization of connexions to the ventral spinocerebellar tract. Exp Brain Res. 1971;12:295–316.

Lundberg A. Function of the ventral spinocerebellar tract. A new hypothesis. Exp Brain Res. 1971;12:317–30.

Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev. 1983;5:237–65.

Asanuma C, Thach WT, Jones EG. Brainstem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brainstem projections of the dorsal column nuclei. Brain Res Rev. 1983;5:299–322.

Asanuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev. 1983;5:267–97.

Brodal P, Bjaalie JG. Organization of the pontine nuclei. Neurosci Res. 1992;13(2):83–118.

Brodal P, Bjaalie JG. Salient anatomic features of the corticoponto-cerebellar pathway. Prog Brain Res. 1997;114:227–49.

Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23(12):613–7.

Orioli PJ, Strick PL. Cerebellar connections with the motor cortex and the arcuate premotor area: An analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol. 1989;288(4):612–26.

Sasaki K, Matsuda Y, Kawaguchi S, Mizuno N. On the cerebello-thalamo-cerebral pathway for the parietal cortex. Exp Brain Res. 1972;16:89–103.

Kakei S, Yagi J, Wannier T, Na J, Shinoda Y. Cerebellar and cerebral inputs to corticocortical and corticofugal neurons in areas 5 and 7 in the cat. J Neurophysiol. 1995;74(1):400–12.

Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2): 700–12.

Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001; 21(16):6283–91.

Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein JF, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349:51–72.

Akaike T. Neuronal organization of the vestibulospinal system in the cat. Brain Res. 1983;259:217–27.

Ito M, Nisimaru N, Yamamoto M. Pathways for the vestibulo-ocular reflex excitation arising from semicircular canals of rabbits. Exp Brain Res. 1976;24:257–71.

Sprague JM, Chambers WW. Regulation of posture in intact and decerebrate cat. I. Cerebellum, reticular formation, vestibular nuclei. J Neurophysiol. 1953;16:451–63.

Chambers WW, Sprague JM. Functional localization in the cerebellum I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J Comp Neurol. 1955;103: 105–30.

Chambers WW, Sprague JM. Functional localization in the cerebellum II. Somatotopic organization in cortex and nuclei. Arch Neurol Psych. 1955;74:653–80.

Thach WT, Goodkin HG, Keating JG. The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci. 1992;15:403–42.

Orlovsky GN. Activity of vestibulospinal neurons during locomotion. Brain Res. 1972;46:85–98.

Orlovsky GN. The effects of different descending systems on flexor and extensor activity during locomotion. Brain Res. 1972;40:359–71.

Yu J, Eidelberg E. Recovery of locomotor function on cats after localized cerebellar lesions. Brain Res. 1983;273: 121–31.

Udo M, Matsukawa K, Kamei H, Oda Y. Cerebellar control of locomotion: effects of cooling cerebellar intermediate cortex in high decerebrate and awake walking cats. J Neurophysiol. 1980;44(1):119–34.

Udo M, Matsukawa K, Kamei H. Effects of partial cooling of cerebellar cortex at lobules V and IV of the intermediate part in the decerebrate walking cats under monitoring vertical floor reaction forces. Brain Res. 1979;160:559–64.

Armstrong DM, Edgley SA. Discharges of interpositus and Purkinje cells of the cat cerebellum during locomotion under different condition. J Physiol. 1988;400:425–45.

Edgley SA, Lidierth M. Step-related discharges of Purkinje cells in the paravermal cortex of the cerebellar anterior lobe in the cat. J Physiol. 1988;401:399–415.

Schwartz AB, Ebner TJ, Bloedel JR. Responses of interposed and dentate neurons to perturbation of the locomotor cycle. Exp Brain Res. 1987;67:323–38.

Marple-Horvat DE, Criado JM. Rhythmic neuronal activity in the lateral cerebellum of the cat during visually guided stepping. J Physiol. 1999;518. 2:595–603.

Marple-Horvat DE, Criado JM, Armstrong DM. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic movements. J Physiol. 1998;506. 2:489–514.

Amarenco P. The spectrum of cerebellar infarctions. Neurology. 1991;41(7):973–9.

Mauritz KH, Dichgans J, Hufschmidt A. Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain. 1979;102:461–82.

Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalog Clin Neurophysiol. 1984;57: 134–42.

Dichgans J, Diener HC. Clinical evidence for functional compartmentalization of the cerebellum. In: Bloedel JR, Dichgans J, Precht W, editors. Cerebellar functions. Berlin: Springer-Verlag; 1985. pp 126–47.

Dichgans J, Mauritz KH. Patterns and mechanisms of postural instability in patients with cerebellar lesions. Adv Neurol. 1983;39:633–43.

Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72(2):479–93.

Bakker M, Allum JHJ, Visser JE, Gruneberg C, van de Warrenburg BP, Kremer BHP, et al. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol. 2006;202(1):21–35.

Van de Warrenburg BPC, Bakker M, Kremer BPH, Bloem BR, Allum JHJ. Trunk sway in patients with spinocerebellar ataxia. Mov Disord. 2006;20(8):1006–13.

Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89(4):1844–56.

Bastian AJ, Mink JW, Kaufman BA, Thach WT. Posterior vermal split syndrome. Ann Neurol. 1998;44(4):601–610.

Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: Abnormal control of movement dynamics. Exp Brain Res. 1998; 119(4):493–503.

Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.

Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: Torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83(5):3019–30.

Cooper SE, Martin JH, Ghez C. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol. 2000;84(4): 1988–2000.

Topka H, Konczak J, Dichgans J. Coordination of multi-joint arm movements in cerebellar ataxia: Analysis of hand and angular kinematics. Exp Brain Res. 1998;119(4):483–92.

Morton SM, Dordevic GS, Bastian AJ. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance. Exp Brain Res. 2004;156(2):149–63.

Deuschl G, Toro C, Zeffiro T, Massaquoi S, Hallett M. Adaptation motor learning of arm movements in patients with cerebellar disease. J Neurol Neurosurg Psychiatry. 1996; 60(5):515–9.

Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119:1183–98.

Lang CE, Bastian AJ. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol. 1999;82(5):2108–19.

Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39(5):954–69.

Raymond JL, Lisberger SG, Mauk MD. The cerebellum: A neuronal learning machine? Science. 1996;272(5265): 1126–31.

Krupa DJ, Thompson RF. Reversible inactivation of the cerebellar interpositus nucleus completely prevents acquisition of the classically conditioned eye-blink response. Learn Mem. 1997;3(6):545–56.

Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80(4):1911–31.

Earhart GM, Fletcher WA, Horak FB, Block EW, Weber KD, Suchowersky O, et al. Does the cerebellum play a role in podokinetic adaptation? Exp Brain Res. 2002;146(4):538–42.

Gordon CR, Fletcher WA, Melvill Jones G, Block EW. Adaptive plasticity in the control of locomotor trajectory. Exp Brain Res. 1995;102:540–5.

Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26(36):9107–16.

Dietz V, Zijlstra W, Duysens J. Human neuronal interlimb coordination during split-belt locomotion. Exp Brain Res. 1994;101(3):513–20.

Reisman DS, Block HJ, Bastian AJ. Interlimb coordination during locomotion: What can be adapted and stored? J Neurophysiol. 2005;94(4):2403–15.

Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates. Ann Rev Neurosci. 1985;8:233–61.

Grillner S. Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol Rev. 1975;55(2):247–304.

Forssberg H, Grillner S, Halbertsma J. The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand. 1980;108:269–81.

Udo M, Oda Y, Tanaka K, Horikawa J. Cerebellar control of locomotion investigated in cats: Discharges from Deiter’s neurons, EMG and limb movements during local cooling of the cerebellar cortex. Prog Brain Res. 1976;44:445–59.

Orlovsky GN. Activity of rubrospinal neurons during locomotion. Brain Res. 1972;46:99–112.

Yanigahara D, Kondo I. Nitric oxide plays a key role in adaptive control of locomotion in cat. Proc Natl Acad Sci USA. 1996;93:13292–7.

Timmann D, Horak FB. Perturbed step initiation in cerebellar subjects. 1. Modifications of postural responses. Exp Brain Res. 1998;119:73–84.

Rand MK, Wunderlich DA, Martin PE, Stelmach., Bloedel JR. Adaptive changes in responses to repeated locomotor perturbations in cerebellar patients. Exp Brain Res. 1998;122:31–43.

Morton SM, Bastian AJ. Prism adaptation during walking generalizes to reaching and requires the cerebellum. J Neurophysiol. 2004;92(4):2497–509.